Ritesh Modi

Solidity
Programming

- ssentials

A beginner's guide to build smart contracts for Ethereum
and blockchain

L Packt

Solidity Programming Essentials

A beginner's guide to build smart contracts for Ethereum and
blockchain

Ritesh Modi

Packt

BIRMINGHAM - MUMBAI

Solidity Programming
Essentials

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Merint Methew
Acquisition Editor: Sandeep Mishra

Content Development Editor: Priyanka Sawant
Technical Editor: Vibhuti Gawde

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Jason Monteiro

Production Coordinator: Deepika Naik

First published: April 2018
Production reference: 1180418
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-138-3

www . packtpub.com

http://www.packtpub.com

A Mapt

Mapt is an online digital library that gives you full access to over
5,000 books and videos, as well as industry leading tools to help
you plan your personal development and advance your career. For
more information, please visit our website.

mapt.io

https://mapt.io/

Why subscribe?

e Spend less time learning and more time coding with

practical eBooks and Videos from over 4,000 industry
professionals

e Improve your learning with Skill Plans built especially for
you

¢ Get a free eBook or video every month
e Mapt is fully searchable

e Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at ww.packtrub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.Packtpub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on Packt books and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Ritesh Modi is an ex Microsoft senior technology evangelist and
Microsoft regional lead. He has worked on Ethereum and Solidity,
extensively helping and advising companies. Ritesh is a regular
speaker on blockchain and Solidity at conferences and local
meetups. He is an architect, evangelist, speaker, and a known leader
for his contributions toward blockchain, data centers, Azure Bots,
cognitive services, DevOps, Artificial Intelligence, and automation.
He is the author of five books.

I have personally grown into a person who has more patience, perseverance, and
tenacity while writing this book. I must thank the people who mean the world to me. I am
talking about my mother, Bimla Modi, my wife, Sangeeta Modi, and my daughter, Avni
Modi. I also thank the Packt team for their support.

About the reviewer

Pablo Ruiz has been involved in the creation of dozens of tech
products over the past 12 years, working with the latest, cutting-
edge technologies. In 2008, he became deeply involved in the
creation of mobile games and applications; later on, he participated
in many projects as an advisor or investor in the digital space.
During 2015/2016, he was a director at one of the top venture
capital firms in Latin America, where he built their Fintech
ecosystem from the ground up. In 2018, after actively working on
several ICOs, he joined Polymath as their VP of engineering to lead
the development of the first Ethereum-based platform for issuing
regulatory-compliant security tokens.

What this book covers

chapter 1, Introduction to Blockchain, Ethereum, and Smart
Contracts, takes you through the fundamentals of blockchain, its
terminology and jargon, advantages, problems it’s trying to solve,
and industry relevance. It will explain the important concepts and
architecture in detail. This chapter will also teach you about
concepts specific to Ethereum. In this chapter, details about its
concepts like externally owned accounts, contract accounts, its
currency in terms of gas and Ether will be discussed. Ethereum is
heavily based on cryptography and you’ll also learn about hash,
encryption, and usage of keys for creating transactions and
accounts. How are transactions and accounts created, how gas is
paid for each transaction, difference between message calls and
transactions, and storage of code and state management will be
explained in detailed.

chapter 2, Installing Ethereum and Solidity, takes you through
creating a private blockchain using Ethereum platform. It will
provide step-by-step guidance for creating a private chain. Another
important tool in Ethereum ecosystem is ganache-cli. This chapter
will also show the process of installing ganache-cli and using it for
deploying Solidity contracts, installing Solidity, and using it to
compile Solidity contracts. You will also install Mist, which is a
wallet and can interact with private chain. Mist will be used to
create new accounts, deploy contracts, and use contracts. Mining of
transactions will also be shown in this chapter. Remix is a great tool
for authoring Solidity contracts.

chapter 3, Introducing Solidity, begins the Solidity journey. In this
chapter, you’ll learn the basics of Solidity by understanding its
different versions and how to use a version using pragmas. Another
import aspect of this chapter is to understand the big picture of

authoring smart contracts. Smart contract layout will be discussed
in depth using important constructs like state variables, functions,
constant function, events, modifiers, fallbacks, enums, and structs.
This chapter discusses and implements the most important element
of any programming language—data types and variables. There are
data types that are simple and complex, value types and reference
types, and storage and memory types—all these types of variables
will also be shown using examples.

chapter 4, Global Variables and Functions, provides implementation
and usage details of block- and transaction-related global functions
and variables and address- and contract-related global functions
and variables. These comes in very handy in writing any series of
smart contract development.

chapter 5, Expressions and Control Structures, teaches you how to
write contracts and functions that will have conditional logic using
if...else and switch statements. Looping is an important part of any
language and Solidity provides while and for loops for looping over
arrays. Examples and implementation of looping will be part of this
chapter. Loops must break based on certain conditions and should
continue based on other conditions.

chapter 6, Writing Smart Contracts, is the core chapter for the book.
Here, you will start writing serious smart contracts. It will discuss
the design aspects of writing smart contracts, defining and
implementing a contract, and deploying and creating contracts
using different mechanisms using the new keyword and using
known addresses. Solidity provides rich object orientation, and this
chapter will delve deep into object-oriented concepts and
implementation such as inheritance, multiple inheritance, declaring
abstract classes and interfaces, and providing method
implementations to abstract functions and interfaces.

chapter 7, Functions, Modifiers, and Fallbacks, shows how to
implement basic functions that accept inputs and return outputs,
functions that just output the existing state without changing the

state and modifiers. Modifiers help in organizing code better in
Solidity. It helps in security and reusing code within contracts.
Fallbacks are important constructs and are executed when a
function call does not match any of the existing function signatures.
Fallbacks are also important for transferring Ether to contracts.
Both modifiers and fallbacks will be discussed and implemented
with examples for easy understanding.

chapter 8, Exceptions, Events, and Logging, is important in Solidity
from contract development perspective. Ether should be returned to
caller in case of error and exception. Exception handling will be
explained and implemented in depth in this chapter using newer
Solidity constructs like assert, require, and revert. The hrow
statement will also be discussed. Events and logging help in
understanding the execution of contracts and functions. This
chapter will show and explain the implementation for both events
and logs.

chapter 9, Truffle Basics and Unit Testing, covers the basics of truffle,
understanding its concepts, creating a project and understanding its
project structure, modifying its configuration, and taking a sample
contract through entire life cycle of writing, testing, deploying, and
migrating a contract. Testing is as important for contracts as
writing a contract. Truffle helps in providing a framework to test;
however, tests should be written. This chapter will discuss the
basics of unit test, write unit test using Solidity, and execute those
unit tests against the smart contract. Unit tests will be executed by
creating transaction and validating its results. This chapter will
show implementation details to write and execute unit tests for a
sample contract.

chapter 10, Debugging Contracts, will be show troubleshooting and
debugging using multiple tools like Remix and events. This chapter
will show how to execute code line by line, check state after every
line of code, and change contract code accordingly.

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit autn
ors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share
their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Solidity Programming Essentials
Packt Upsell

Why subscribe?

PacktPub.com
Contributors

About the author
About the reviewer

Packt is searching for authors like you
Preface

Who this book is for

What this book covers
To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. Introduction to Blockchain, Ethereum, and Smart Contracts

What is a blockchain?

why blockchains?
Cryptography

Symmetric encryption and decryption
Asymmetric encryption and decryption
Hashing

Digital signatures

Ether

Gas

Blockchain and Ethereum architecture

How are blocks related to each other?

How are transactions and blocks related to each other?

Ethereum nodes

EVM
Ethereum mining nodes

How does mining work?

Ethereum accounts

Externally owned accounts

Contract accounts

Transactions
Blocks
An end-to-end transaction

What is a contract?

What is a smart contract?

How to write smart contracts?

How are contracts deployed?

Summary

2. Installing Ethereum and Solidity

Ethereum networks

Main network

Test network

Ropsten

Rinkeby

Kovan

Private network

Consortium network

Geth

Installing Geth on Windows

Creating a private network
ganache-cli

Solidity compiler

The web3 JavaScript library
Mist wallet

MetaMask

Summary

3. Introducing Solidity

Ethereum Virtual Machine
Solidity and Solidity files

Pragma
Comments
The import statement

Contracts

Structure of a contract

State variables
Structure
Modifiers
Events
Enumeration

Functions

Data types in Solidity

Value types

Passing by value

Reference types

Passing by reference

Storage and memory data locations

Literals
Integers
Boolean

The byte

Arrays

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7

Rule 8

data type

Fixed arrays

Dynamic arrays

Special arrays

The bytes array

The String array

Array properties

Structure of an array
Enumerations

Address

Mappings

Summary

4. Global variables and Functions

The var type variables
Variables hoisting

Variable scoping

Type conversion

Implicit conversion

Explicit conversion

Block and transaction global variables

Transaction and message global variables

Difference between tx.origin and msg.sender

Cryptography global variables
Address global variables

Contract global variables

Summary

5. Expressions and Control Structures

Solidity expressions
The if decision control
The while loop

The for loop

The do...while loop

The break statement

The continue statement
The return statement

Summary

6. Writing Smart Contracts

Smart contracts

Writing a simple contract

Creating contracts

Using the new keyword

Using address of a contract

Constructors

Contract composition

Inheritance

Single inheritance

Multi-level inheritance

Hierarchical inheritance

Multiple inheritance

Encapsulation

Polymorphism

Function polymorphism

Contract polymorphism

Method overriding
Abstract contracts
Interfaces

Summary

7. Functions, Modifiers, and Fallbacks

Function input and output
Modifiers

The view, constant, and pure functions

The address functions

The send method
The transfer method
The call method
The callcode method

The delegatecall method

The fallback function

Summary

8. Exceptions, Events, and Logging

Error handling

The require statement
The assert statement

The revert statement

Events and logging

Summary

O. Truffle Basics and Unit Testing

Application development life cycle management
Truffle

Development with Truffle

Testing with Truffle

Summary

10. Debugging Contracts

Debugging

The Remix editor

Using events

Using a Block Explorer

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

I am not sure the last time I heard so much of a discussion about a
technology across governments, organizations, communities, and
individuals. Blockchain is a technology that is being discussed and
debated at length across the world and organizations, and without a
reason. Blockchain is not just a technology that has limited effect on
our life. It has and will have widespread ramifications in our lives.
The day is not far when blockchain will touch almost each aspect of
our activities—whether paying bills, transactions with any
organizations, getting salary, identity, educational results, activities,
and so on. This is just the beginning, and we have just started to
understand the meaning of decentralization and its impact.

I have been working on blockchain for quite some time now and
have been a crypto-investor for long. I am a technologist and am
completely fascinated by Bitcoin because of the architectural marvel
it is. I have never come across such superior thought process and
architecture that actually solves not only economic and social
problems but solves some technically unsolved problems such as
Byzantine general problems and fault tolerance. It solves the
problem of distributed computing at large.

Ethereum is built in an almost similar fashion, and I was in awe
when I first heard and experienced smart contracts. Smart contracts
are one of the greatest innovation to deploy decentralized
applications on blockchain and extend it easily with custom logic,
policies, and rules.

I have thoroughly enjoyed authoring this book and sincerely hope
that you would also enjoy reading and implementing Solidity. I have
brought in a lot of my Solidity experience and try to make the
maximum out of it. I hope this book makes you a better Solidity

developer and a superior programmer.

Do let me know if there is anything I can do to make your
experience better with this book. I am all ears, and happy learning!

Who this book is for

To make usage of the content of this book, basic prior knowledge of
computing and general programming concepts is needed. If you feel
you don't have that knowledge, it is always possible to catch up the
basic requirements with a fast reading on many beginners' books on
programming. This book is essentially intended for blockchain
architects, developers, consultants, and IT engineers who are using
blockchain to provide advanced services to end customers and
employers. If you are also willing to write smart contracts solution
on Ethereum, then this book is ideal for you. If you already have
some experience with JavaScript, this book can help you speed up
with it in a fast-paced way.

To get the most out of this
book

This book assumes a basic level knowledge of programming. It is
ideal to have some background on any scripting language. All you
need is an internet connectivity and a browser for using a majority
of this book. There are sections that will need creating a machine to
deploy blockchain specific tools and utilities. This machine can be
physical or virtual, on cloud or on-premise.

Download the example code
files

You can download the example code files for this book from your
account at www.packtpub.com. If you purchased this book elsewhere, you
can visit www. packtpub.com/support and register to have the files emailed

directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the

S W nhp R

onscreen instructions.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux
The code bundle for the book is also hosted on GitHub at nttps://githu

b.com/PacktPublishing/SolidityProgrammingEssentials. In case there's an update
to the code, it will be updated on the existing GitHub repository.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/

Conventions used

There are a number of text conventions used throughout this book.

codeInText: INndicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user
input, and Twitter handles. Here is an example: "A genesis. json file is
required to create this first block."

A block of code is set as follows:

{

"config": {

"chainId": 15,
"homesteadBlock": O,
"eip155Block": O,
"eip158Block": ©

+

"nonce": "Ox0000000000000042",
"mixhash":
"Ox0000000000000000ENOENOAONEENEENOENOAOORENEENEENOEOOEEONBENBENOELO",
"difficulty": "Ox200",

"alloc": {3},

""coinbase": "Ox0000000000000000000000000ONOOEEOOOOOEEOOO",
"timestamp": "Ox00",

"parentHash":

"OX0000000000000000EONNOEEONONOEEEONNEEEONNOEEONNBEEEOONNAEEOOBEEEE",
"gasLimit": "oxffffffff",

"alloc": {

3

b

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(ule0)
exten => s,102,Voicemail (bh100)
exten => i, 1,Voicemail(s0)

Any command-line input or output is written as follows:
npm install -g ganache-cli

Bold: Indicates a new term, an important word, or words that you
see onscreen. For example, words in menus or dialog boxes appear
in the text like this. Here is an example: "For sending Ether from
one account to another, select an account and click on

the Send button."”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedbackapacktpub.com and mention the book
title in the subject of your message. If you have questions about any
aspect of this bOOk, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book, we would be grateful if you would report this to us. Please
VISIt www. packtpub.com/submit-errata, selecting your bOOk, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a
topic that you have expertise in and you are interested in either
ertlng or contributing toa bOOk, please ViSit authors. packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

Introduction to Blockchain,
Ethereum, and Smart Contracts

This decade has already seen the extraordinary evolution of the
technology and computing ecosystem. Technological innovation
and its impact has been noticeable across the spectrum, from the
Internet of Things (IoT), to Artificial Intelligence (AI), to
blockchains. Each of them has had a disruptive force within
multiple industries and blockchains are one of the most disruptive
technologies today. So much so that blockchains have the potential
to change almost every industry. Blockchains are revolutionizing
almost all industries and domains while bringing forward newer
business models. Blockchains are not a new technology; however,
they have gained momentum over the last couple of years. It is a big
leap forward in terms of thinking about decentralized and
distributed applications. It is about the current architectural
landscape and strategies for moving toward immutable distributed
databases.

In this first chapter, you will quickly learn and understand the basic
and foundational concepts of blockchains and Ethereum. We will
also discuss some of the important concepts that makes blockchains
and Ethereum work. Also, we will touch briefly on the topic of smart
contracts and how to author them using Solidity.

It is to be noted that this chapter briefly explains important
blockchain concepts. It does not explain all concepts in detail and
would require a complete book only for that purpose. Since
Ethereum is an implementation of a blockchain, both the words
have been used interchangeably in this book.

This chapter will focus on introducing the following topics:

What is a blockchain and why is it used?
Cryptography

Ether and gas

Blockchain and Ethereum architecture

Nodes

Mining

Understanding accounts, transactions, and blocks

Smart contracts

What is a blockchain?

A blockchain is essentially a decentralized distributed database or a
ledger, as follows:

e Decentralization: In simple terms, it means that the
application or service continues to be available and usable
even if a server or a group of servers on a network crashes or
is not available. The service or application is deployed on a
network in a way that no server has absolute control over
data and execution, rather each server has a current copy of
data and execution logic.

¢ Distributed: This means that any server or node on a
network is connected to every other node on the network.
Rather than having one-to-one or one-to-many connectivity
between servers, servers have many-to-many connections
with other servers.

e Database: This refers to the location for storing durable
data that can be accessed at any point in time. A database
allows storage and retrieval of data as functionality and also
provides management functionalities to manage data
efficiently, such as export, import, backup, and restoration.

e Ledger: This is an accounting term. Think of it as
specialized storage and retrieval of data. Think of ledgers
that are available to banks. For example, when a transaction
is executed with a bank—say, Tom deposits 100 dollars in

his account, the bank enters this information in a ledger as a
credit. At some point in the future Tom withdraws 25
dollars. The bank does not modify the existing entry and
stored data from 100 to 75. Instead it adds another entry in
the same ledger as a debit of 25 dollars. It means a ledger is
a specialized database that does not allow modification of
existing data. It allows you to create and append a new
transaction to modify the current balance in the ledger. The
blockchain is a database that has the same characteristics of
a ledger. It allows newer transactions to be stored in an
append-only pattern without any scope to modify past
transactions. It is important here to understand that existing
data can be modified by using a new transaction, but past
transactions cannot be modified. A balance of 100 dollars
can be modified at any time by executing a new debit or
credit transaction, but previous transactions cannot be
modified. Take a look at the following diagram for a better
understanding:

|

Chain of Blocks

Blockchain means a chain of blocks. Blockchain means having
multiple blocks chained together, with each block storing
transactions in a way where it is not possible to change these
transactions. We will discuss this in later sections when we talk
about the storage of transactions and how immutability is achieved
in a blockchain.

Because of being decentralized and distributed, blockchain
solutions are stable, robust, durable, and highly available. There is
no single point of failure. No single node or server is the owner of
the data and solution, and everyone participates as a stakeholder.

Not being able to change and modify past transactions makes
blockchain solutions highly trustworthy, transparent, and
incorruptible.

Ethereum allows extending its functionality with the help of smart
contracts. Smart contracts will be addressed in detail throughout
this book.

Why blockchains?

The main objective of Ethereum is to accept transactions from
accounts, update their state, and maintain this state as current till
another transaction updates it again. The whole process of
accepting, executing, and writing transactions can be divided into
two phases in Ethereum. There is a decoupling between when a
transaction is accepted by Ethereum and when the transaction is
executed and written to the ledger. This decoupling is quite
important for decentralization and distributed architecture to work
as expected.

Blockchain helps primarily in the following three different ways:

e Trust: Blockchain helps in creating applications that are
decentralized and collectively owned by multiple people.
Nobody within this group has the power to change or delete
previous transactions. Even if someone tries to do so, it will
not be accepted by other stakeholders.

¢ Autonomy: There is no single owner for blockchain-based
applications. No one controls the blockchain, but everyone
participates in its activities. This helps in creating solutions
that cannot be manipulated or induce corruption.

e Intermediaries: Blockchain-based applications can help
remove the intermediaries from existing processes.
Generally there is a central body, such as vehicle
registration, license issuing, and so on, that acts as registrar
for registering vehicles as well as issuing driver licenses.

Without blockchain-based systems, there is no central body
and if a license is issued or vehicle is registered after a
blockchain mining process, that will remain a fact for an
epoch time-period without the need of any central authority
vouching for it.

Blockchain is heavily dependent on cryptography technologies as
we discuss in the following section.

Cryptography

Cryptography is the science of converting plain simple text into
secret, hidden, meaningful text, and vice-versa. It also helps in
transmitting and storing data that cannot be easily deciphered
using owned keys.

There are the following two types of cryptography in computing:

e Symmetric

e Asymmetric

Symmetric encryption and
decryption

Symmetric cryptography refers to the process of using a single
key for both encryption and decryption. It means the same key
should be available to multiple people if they want to exchange
messages using this form of cryptography.

Asymmetric encryption and
decryption

Asymmetric cryptography refers to the process of using two
keys for encryption and decryption. Any key can be used for
encryption and decryption. Message encryption with a public key
can be decrypted using a private key and messages encrypted by a
private key can be decrypted using a public key. Let's understand
this with the help of an example. Tom uses Alice's public key to
encrypt messages and sends it to Alice. Alice can use her private key
to decrypt the message and extract contents out of it. Messages
encrypted with Alice's public key can only be decrypted by Alice as
only she holds her private key and no one else. This is the general
use case of asymmetric keys. There is another use which we will see
while discussing digital signatures.

Hashing

Hashing is the process of transforming any input data into fixed
length random character data, and it is not possible to regenerate or
identify the original data from the resultant string data. Hashes are
also known as fingerprint of input data. It is next to impossible to
derive input data based on its hash value. Hashing ensures that
even a slight change in input data will completely change the output
data, and no one can ascertain the change in the original data.
Another important property of hashing is that no matter the size of
input string data, the length of its output is always fixed. For
example, using the SHA256 hashing algorithm and function with
any length of input will always generate 256 bit output data. This
can especially become useful when large amounts of data can be
stored as 256 bit output data. Ethereum uses the hashing technique
quite extensively. It hashes every transaction, hashes the hash of
two transactions at a time, and ultimately generates a single root
transaction hash for every transaction within a block.

Another important property of hashing is that it is not
mathematically feasible to identify two different input strings that
will output the same hash. Similarly, it is not possible to
computationally and mathematically find the input from the hash
itself.

Ethereum used keccakzss as its hashing algorithm.

The following screenshot shows an example of hashing. The input
Ritesh Modi generates a hash, as shown in the following screenshot:

Even a small modification to input generates a completely different
hash, as shown in the following screenshot:

I

sl

Digital sighatures

Earlier, we discussed cryptography using asymmetric keys. One of
the important cases for using asymmetric keys is in the creation and
verification of a digital signature. Digital signatures are very similar
to a signature done by an individual on a piece of paper. Similar to a
paper signature, a digital signature helps in identifying an
individual. It also helps in ensuring that messages are not tampered
with in transit. Let's understand digital signatures with the help of
an example.

Alice wants to send a message to Tom. How can Tom identify and
ensure that the message has come from Alice only and that the
message has not been changed or tampered with in transit? Instead
of sending a raw message/transaction, Alice creates a hash of the
entire payload and encrypts the hash with her private key. She
appends the resultant digital signature to the hash and transmits it
to Tom. When the transaction reaches Tom, he extracts the digital
signature and decrypts it using Alice's public key to find the original
hash. He also extracts the original hash from the rest of the message
and compares both the hashes. If the hashes match, it means that it
actually originated from Alice and that it has not been tampered
with.

Digital signatures are used to sign transaction data by the owner of
the asset or cryptocurrency, such as Ether.

Ether

Ether is the currency of Ethereum. Every activity on Ethereum that
modifies its state costs Ether as a fee, and miners who are
successful in generating and writing a block in a chain are also
rewarded Ether. Ether can easily be converted to dollars or other
traditional currencies through cryptoexchanges.

Ethereum has a metric system of denominations used as units of
Ether. The smallest denomination or base unit of Ether is called
wei. The following is a list of the named denominations and their
value in wei which is available at https://github.com/ethereum/web3.js/blob/0
.15.0/1ib/utils/utils.js#L40.

var unitMap = {

'wei' @ '1'
"kwei': '1000',
'ada': '1000',

'femtoether': '1000',

'mwei': '1000000',

'babbage': '1000000',

'picoether': '1000000',

'gwei': '1000000000',

'shannon': '1000000000',

'nanoether': '1000000000',

'nano': '1000000000',

'szabo': '1000000000000',
'microether': '1000000000000',
'micro': '1000000000000',

'finney': '1000000000000000"',
'milliether': '1000000000000000',
'milli': '1000000000000000',

'ether': '1000000000000000000"',
'kether': '1000000000000000000000",
'grand': '1000000000000000000000',
'einstein': '1000000000000000000000"',
'mether': '1000000000000000000000000"',
'gether': '1000000000000000000000000000",
'tether': '1000000000000000000000000000000"

https://github.com/ethereum/web3.js/blob/0.15.0/lib/utils/utils.js#L40

Gas

In the previous section, it was mentioned that fees are paid using
Ether for any execution that changes state in Ethereum. Ether is
traded on public exchanges and its price fluctuates daily. If Ether is
used for paying fees, then the cost of using the same service could
be very high on certain days and low on other days. People will wait
for the price of Ether to fall to execute their transactions. This is not
ideal for a platform such as Ethereum. Gas helps in alleviating this
problem. Gas is the internal currency of Ethereum. The execution
and resource utilization cost is predetermined in Ethereum in terms
of gas units. This is also known as gas cost. There is also gas price
that can be adjusted to a lower price when the price of Ether
increases and a higher price when the price of Ether decreases. For
example, to invoke a function in a contract that modifies a string
will cost gas, which is predetermined, and users should pay in terms
of gas to ensure smooth execution of this transaction.

Blockchain and Ethereum
architecture

Blockchain is an architecture comprising multiple components and
what makes blockchain unique is the way these components
function and interact with each other. Some of the important
Ethereum components are Ethereum Virtual Machine (EVM),
miner, block, transaction, consensus algorithm, account, smart
contract, mining, Ether, and gas. We are going to discuss each of
these components in this chapter.

A blockchain network consists of multiple nodes belonging to
miners and some nodes that do not mine but help in execution of
smart contracts and transactions. These are known as EVMs. Each
node is connected to another node on the network. These nodes use
peer-to-peer protocol to talk to each other. They, by default, use
port seses to talk among themselves.

Each miner maintains an instance of ledger. A ledger contains all
blocks in the chain. With multiple miners it is quite possible that
each miner's ledger instance might have different blocks to another.
The miners synchronize their blocks on an on-going basis to ensure
that every miner's ledger instance is the same as the other.

Details about ledgers, blocks, and transactions are discussed in
detail in subsequent sections in this chapter.

The EVM also hosts smart contracts. Smart contracts help in
extending Ethereum by writing custom business functionality into
it. These smart contracts can be executed as part of a transaction
and it follows the process of mining as discussed earlier.

A person having an account on a network can send a message for
transfer of Ether from their account to another or can send a
message to invoke a function within a contract. Ethereum does not
distinguish them as far as transactions are considered. The
transaction must be digitally signed with an account holder's
private key. This is to ensure that the identity of the sender can be
established while verifying the transaction and changing the
balances of multiple accounts. Let's take a look at the components
of Ethereum in the following diagram:

ma| anedt I EVETY e

W

bendly ontra fn

oned O
heourt— Send et

anoherA

LEEE

I S e 1 R W]
ol B g WM el g
Lo 5 % M/ R | i

How are blocks related to each
other?

In blockchain and Ethereum every block is related to another block.
There is a parent-child relationship between two blocks. There can
be only one child to a parent and a child can have a single parent.
This helps in forming a chain in blockchain. Blocks are explained in
a later section in this chapter. In the following diagram, three
blocks are shown—Block 1, Block 2, and Block 3. Block 1 is the
parent of Block 2 and Block 2 is the parent of Block 3. The
relationship is established by storing the parent block's hash in a
child's block header. Block 2 stores the hash of Block 1 in its
header and Block 3 stored the hash of Block 2 in its header. So,
the question arises—who is the parent of the first block? Ethereum
has a concept of the genesis block also known as first block.
This block is created automatically when the chain is first initiated.
You can say that a chain is initiated with the first block known as
the Genesis Block and the formation of this block is driven
through the genesis. json file. Let's take a look at the following
diagram:

)
Genesis

Block

Hash
Oxabc123

Previous
Block
Hash

0x000000

Transaction
(xaaaaaa

Transaction
Oxbbbbbb

100

Transaction
Oxceccecc

R

Block1 Block 2 Block 3
Hash Hash Hash
Oxalb2c3 Oxd1e2f3 \ 0x123abc
Previous N Previous \ Previous
\Block \Block \Block
Hash Hash Hash
Oxabc123 Oxalb2c3 Oxdle2f3

Transaction
Oxeeeeee

Transaction
Oxffffff

Transaction
Oxdddddd

(Ll

O)

Transaction
Oxaaabbb

Transaction
Oxbbbcce

The following chapter will show how to use the genesis. json file to
create the first block while initializing the blockchain.

How are transactions and
blocks related to each other?

Now that we know that blocks are related to each other, you will be
interested in knowing how transactions are related to blocks.
Ethereum stores transactions within blocks. Each block has an
upper gas limit and each transaction needs a certain amount of gas
to be consumed as part of its execution. The cumulative gas from all
transactions that are not yet written in a ledger cannot surpass the
block gas limit. This ensures that all transactions do not get stored
within a single block. As soon as the gas limit is reached, other
transactions are removed from the block and mining begins
thereafter.

The transactions are hashed and stored in the block. The hashes of
two transactions are taken and hashed further to generate another
hash. This process eventually provides a single hash from all
transactions stored within the block. This hash is known as

the transaction Merkle root hash and is stored in a block's
header. A change in any transaction will result in a change in its
hash and, eventually, a change in the root transaction hash. It will
have a cumulative effect because the hash of the block will change,
and the child block has to change its hash because it stores its
parent hash. This helps in making transactions immutable. This is
also shown in the following diagram:

Block _
/ Chain
v /

Block — blblbl —Transactions
l dldidl l elelel l a2aa? l b2b2b2

Ethereum nodes

Nodes represent the computers that are connected using a peer-to-
peer protocol to form an Ethereum network.

There are the following two types of nodes in Ethereum:

e EVM
¢ Mining nodes

It is to be noted that this distinction is made to clarify concepts of
Ethereum. In most scenarios, there is no dedicated EVM. Instead,

all nodes act as miners as well as EVM nodes.

EVM

Think of EVM as the execution runtime for an Ethereum network.
EVMs are primarily responsible for providing a runtime that can
execute code written in smart contracts. It can access accounts,
both contract and externally owned, and its own storage data. It
does not have access to the overall ledger but does have limited
information about the current transaction.

EVMs are the execution components in Ethereum. The purpose of
an EVM is to execute the code in a smart contract line by line.
However, when a transaction is submitted, the transaction is not
executed immediately. Instead it is pooled in a transaction pool.
These transactions are not yet written to the Ethereum ledger.

Ethereum mining nodes

A miner is responsible for writing transactions to the Ethereum
chain. A miner's job is very similar to that of an accountant. As an
accountant is responsible for writing and maintaining the ledger;
similarly, a miner is solely responsible for writing a transaction to
an Ethereum ledger. A miner is interested in writing transactions to
a ledger because of the reward associated with it. Miners get two
types of reward—a reward for writing a block to the chain and
cumulative gas fees from all transactions in the block. There are
generally many miners available within a blockchain network each
trying and competing to write transactions. However, only one
miner can write the block to the ledger and the rest will not be able
to write the current block.

The miner responsible for writing the block is determined by way of
a puzzle. The challenge is given to every miner and they try to solve
the puzzle using their compute power. The miner who solves the
puzzle first writes the block containing transactions to his own
ledger and sends the block and nonce value to other miners for
verification. Once verified and accepted, the new block is written to
all ledgers belonging to miners. In this process, the winning miner
also receives 5 Ether as reward. Every mining node maintains its
own instance of the Ethereum ledger and the ledger is ultimately
the same across all miners. It is the miner's job to ensure that their
ledger is updated with the latest blocks. Following are the three
important functions performed by miners or mining nodes:

e Mine or create a new block with a transaction and write the
same to the Ethereum ledger

¢ Advertise and send a newly mined block to other miners

e Accept new blocks mined by other miners and keep its own
ledger instance up-to-date

Mining nodes refer to the nodes that belong to miners. These nodes
are part of the same network where the EVM is hosted. At some
point in time, the miners will create a new block, collect all
transactions from the transaction pool, and add them to the newly
created block. Finally, this block is added to the chain. There are
additional concepts such as consensus and solving of target puzzle
before writing the block that will be explained in the following
section.

How does mining work?

The process of mining explained here is applicable to every miner
on the network and every miner keeps executing the tasks
mentioned here regularly.

Miners are always looking forward to mining new blocks, and are
also listening actively to receive new blocks from other miners. They
are also listening for new transactions to store in the transaction
pool. Miners also spread the incoming transactions to other
connected nodes after validation. As mentioned before, at some
point, the miner collects all transactions from the transaction pool.
This activity is done by all miners.

The miner constructs a new block and adds all transactions to it.
Before adding these transactions, it will check if any of the
transactions are not already written in a block that it might receive
from other miners. If so, it will discard those transactions.

The miner will add their own coinbase transaction for getting
rewards for mining the block.

The next task for a miner is to generate the block header and
perform the following tasks:

1. The miner takes hashes of two transactions at a time to
generate a new hash till he gets a single hash from all
transactions. The hash is referred to as a root transaction
hash or Merkle root transaction hash. This hash is added to
the block header.

2. The miner also identifies the hash of the previous block. The

previous block will become parent to the current block and
its hash will also be added to the block header.

3. The miner calculates the state and receipts of transaction
root hashes and adds them to the block header.

4. A nonce and timestamp is also added to the block header.

5. A block hash consisting of both block header and body is
generated.

6. The mining process starts where the miner keeps changing
the nonce value and tries to find a hash that will satisfy as an
answer to the given puzzle. It is to be kept in mind that
everything mentioned here is executed by every miner in the
network.

7. Eventually, one of the miners will be able to solve the puzzle
and advertise the same to other miners in the network. The
other miners will verify the answer and, if found correct, will
further verify every transaction, accept the block, and
append the same to their ledger instance.

This entire process is also known as Proof of Work (PoW)
wherein a miner provides proof that it is has worked on computing
the final answer that could satisfy as solution to the puzzle. There
are other algorithms such as Proof of Stake (PoS) and Proof of
Authority (PoA), but they are not used or discussed in this book.

The header block and its content is shown in the following diagram:

Block

Previous Hash ~ Nonce

Merkle Root - Timestamp

Block Blck
¢+ Provious Hash Nonce ¢ Previous Hash Nonce

- Merkle Root - Timestamp Merkle Root ~ Timestamp

Merkle Tree

Hash Valug AB Hash Value CD

ZSe

Hash Value A

|

Transacton A

Hash Value B Hash Value C \Hash Value D

[T 1

Transactin B Transacion C' Transaction D

Ethereum accounts

Accounts are the main building blocks for the Ethereum ecosystem.
It is an interaction between accounts that Ethereum wants to store
as transactions in its ledger. There are two types of accounts
available in Ethereum—externally owned accounts and contract
accounts. Each account, by default, has a property named balance
that helps in querying the current balance of Ether.

Externally owned accounts

Externally owned accounts are accounts that are owned by people
on Ethereum. Accounts are not referred to by name in Ethereum.
When an externally owned account is created on Ethereum by an
individual, a public/private key is generated. The private key is kept
safe with the individual while the public key becomes the identity of
this externally owned account. This public key is generally of 256
characters, however, Ethereum uses the first 160 characters to
represent the identity of an account.

If Bob, for example, creates an account on an Ethereum network—
whether private or public, he will have his private key available to
himself while the first 160 characters of his public key will become
his identity. Other accounts on the network can then send Ether or
other cryptocurrencies based on Ether to this account.

An account on Ethereum looks like the one shown in the following
screenshot:

An externally owned account can hold Ether in its balance and does
not have any code associated with it. It can execute transactions
with other externally owned accounts and it can also execute
transactions by invoking functions within contracts.

Contract accounts

Contract accounts are very similar to externally owned accounts.
They are identified using their public address. They do not have a
private key. They can hold Ether similar to externally owned
accounts; however, they contain code—code for smart contracts
consisting of functions and state variables.

Transactions

A transaction is an agreement between a buyer and a seller, a
supplier and a consumer, or a provider and a consumer that there
will be an exchange of assets, products, or services for currency,
cryptocurrency, or some other asset, either in the present or in the
future. Ethereum helps in executing the transaction. Following are
the three types of transactions that can be executed in Ethereum:

¢ Transfer of Ether from one account to another: The
accounts can be externally owned accounts or contract
accounts. Following are the possible cases:

¢ An externally owned account sending Ether to
another externally owned account in a transaction

e An externally owned account sending Ether to a
contract account in a transaction

e A contract account sending Ether to another contract
account in a transaction

e A contract account sending Ether to an externally
owned account in a transaction

e Deployment of a smart contract: An externally owned
account can deploy a contract using a transaction in EVM.

¢ Using or invoking a function within a contract:
Executing a function in a contract that changes state is

considered a transaction in Ethereum. If executing a
function does not change a state, it does not require a
transaction.

A transaction has some of the following important properties
related to it:

e The rrom account property denotes the account that is

originating the transaction and represents an account that is
ready to send some gas or Ether. Both gas and Ether
concepts were discussed earlier in this chapter. The from
account can be externally owned or a contract account.

The to account property refers to an account that is receiving
Ether or benefits in lieu of an exchange. For transactions
related to deployment of contract, the to field is empty. It
can be externally owned or a contract account.

The vaiue account property refers to the amount of Ether that
is transferred from one account to another.

The input account property refers to the compiled contract
bytecode and is used during contract deployment in EVM. It
is also used for storing data related to smart contract
function calls along with its parameters. A typical
transaction in Ethereum where a contract function is
invoked is shown here. In the following screenshot, notice
the input field containing the function call to contract along
with its parameters:

The biocknash account property refers to the hash of block to

which this transaction belongs.

The biocknumber account property is the block in which this
transaction belongs.

The gas account property refers to the amount of gas
supplied by the sender who is executing this transaction.

The gasprice account property refers to the price per gas the
sender was willing to pay in wei (we have already learned
about wei in the Ether section in this chapter). Total gas is
computed at gas units * gas price.

e The nash account property refers to the hash of the
transaction.

e The nonce account property refers to the number of
transactions made by the sender prior to the current
transaction.

o The transactionindex account property refers to the serial
number of the current transactions in the block.

e The vaiue account property refers to the amount of Ether
transferred in wei.

e The v, r, and s account properties relate to digital signatures
and the signing of the transaction.

A typical transaction in Ethereum, where an externally owned
account sends some Ether to another externally owned account, is
shown here. Notice the input field is not used here. Since two Ethers
were sent in transaction, the vaiue field is showing the value
accordingly in wei as shown in the following screenshot:

lockHash: ' @x78ddcodla18352811888dea65%a69f357424aa0ec8562095603524eB07C 893,
blockNumber: 165,

From: " 0xab7de277ededc 1521 51F698%d2497a509¢1926'

gas: 90000,

gasPrice: Bighumber { s: 1, €: 16, c: [18000000060 | },

nash: ' 0x9376810599954ed0e1982f82150042903c0a00 14233 e ab34T01edb6aTech]
input: 0x’,

nonce: 2,

to: 'Ox9d2a327b320da73%edobda33c3809%46ccBefoa

transactionIndex: 0,

Value: Bighumber { s: 1, e: 18, c: [20000 | },

T

r+ ' Ox9fb14382840ab5 eaf2d33f326386895bebcee 350479675183 Tdef8fs',
S 046580ac95226e3a8a900497ceBcB41e0833¢ 01053256 7008c 2aal 26badbel bl |

One method to send Ether from an externally owned account to
another externally owned account is shown in the following code
snippet using webs JavaScript framework, which will be covered later
in this book:

web.eth.sendTransaction({from: web.eth.accounts[0], to:
"0x9d2a327b320da739ed6b0dal33c3809946cc8cf6a", value: web.towWei(2, 'ether')})

A typical transaction in Ethereum where a contract is deployed is
shown in the following screenshot. In the following screenshot,
notice the input field containing the bytecode of contract:

Blocks

Blocks are an important concept in Ethereum. Blocks are containers
for a transaction. A block contains multiple transactions. Each
block has a different number of transactions based on gas limit and
block size. Gas limit will be explained in detail in later sections. The
blocks are chained together to form a blockchain. Each block has a
parent block and it stores the hash of the parent block in its header.
Only the first block, known as the genesis block, does not have a
parent.

A typical block in Ethereum is shown in the following screenshot:

o0
o
o p—
o
o=
>
@)
—
o
£
o
|
0
<
~
)
op—i
=
o)
Q
)
[av]
o=
)
o
9]
wn
[av]
w2
)
o p—{
e
—
()
o
@)
—
o
(-
(@)
)
(@]
p—{
<
)
—
[a]
)
—
=
T

insights and metadata about it, and following are some of important
properties along with their descriptions:

e The difricurty property determines the complexity of the
puzzle/challenge given to miners for this block.

e The gastinit property determines the maximum gas allowed.
This helps in determining how many transactions can be
part of the block.

e The gasused property refers to the actual gas used for this
block for executing all transactions in it.

e The nasn property refers to the hash of the block.

e The nonce property refers to the number that helps in solving
the challenge.

e The niner property is the account identifier of the miner, also
known as coinbase or etherbase.

e The number property is the sequential number of this block on
the chain.

o The parentiash property refers to the parent block's hash.

e The receiptsRoot, stateRoot, and transactionsRroot properties refer to
MerKkle trees discussed during the mining process.

e The transactions property refers to an array of transactions
that are part of this block.

e The totaipifricuity property refers to the total difficulty of the
chain.

An end-to-end transaction

Armed with the understanding of the foundational concepts of
blockchain and Ethereum, it's time to see a complete end-to-end
transaction and how it flows through multiple components and gets
stored in the ledger.

In this example, Sam wants to send a digital asset (for example,
dollars) to Mark. Sam generates a transaction message containing
the from, to, and vaiue fields and sends it across to the Ethereum
network. The transaction is not written to the ledger immediately
and instead is placed in a transaction pool.

The mining node creates a new block and takes all transactions
from the pool honoring the gas limit criteria and adds them to the
block. This activity is done by all miners on the network. Sam's
transaction will also be a part of this process.

The miners compete trying to solve the challenge thrown to them.
The winner is the miner who can solve the challenge first. After a
period (of seconds) one of the miners will advertise that they has
found the solution to the challenge and that they are the winner and
should write the block to the chain. The winner sends the challenge
solution along with the new block to all other miners. The rest of
the miners validate and verify the solution and, once satisfied that
the solution is indeed correct and that the original miner has
cracked the challenge, they accept the new block containing Sam's
transaction to append in their instance of the ledger. This generates
a new block on the chain that is persisted across time and space.
During this time, the accounts of both parties are updated with the
new balance. Finally, the block is replicated across every node in the
network.

The preceding example can be well understood with the following

diagram:

W ; 4L e
¢ —H Y@

Sam wants Transaction Thenodes Anew block Both

to send §9 redches the compete with Accounts

to Mark network and transaction re
validate s updated
the generated

transaction

The Block s
replicated
and stored
on all nodes

What is a contract?

A contract is a legal document that binds two or more parties who
agree to execute a transaction immediately or in the future. Since
contracts are legal documents, they are enforced and implemented
by law. Examples of contracts are an individual entering into a
contract with an insurance company for covering their health
insurance, an individual buying a piece of land from another
individual, or a company selling its shares to another company.

What is a smart contract?

A smart contract is custom logic and code deployed and executed
within an Ethereum virtual environment. Smart contracts are
digitized and codified rules of transaction between accounts. Smart
contracts help in transferring digital assets between accounts as an
atomic transaction. Smart contracts can store data. The data stored
can be used to record information, facts, associations, balances, and
any other information needed to implement logic for real-world
contracts. Smart contracts are very similar to object-oriented
classes. A smart contract can call another smart contract just like an
object-oriented object can create and use objects of another class.
Think of smart contracts as a small program consisting of functions.
You can create an instance of the contract and invoke functions to
view and update contract data along with the execution of some
logic.

How to write smart contracts?

There are multiple smart contracts authoring tools including Visual
Studio. However, the easiest and fastest way to develop smart
contracts is to use a browser-based tool known as Remix. Remix is
available on nttp://remix.ethereun.org. ReEmix is a new name and was
earlier known as browser-solidity. Remix provides a rich
integrated development environment in a browser for authoring,
developing, deploying, and troubleshooting contracts written using
the Solidity language. All contract management related activities
such as authoring, deploying, and troubleshooting can be
performed from the same environment without moving to other
windows or tabs.

Not everyone is comfortable using the online version of Remix to
author their smart contracts. Remix is an open source tool that can
be downloaded from https://github.com/ethereum/browser-Solidity and
compiled to run a private version on a local computer. Another
advantage of running Remix locally is that it can connect to local
private chain networks directly; otherwise, users will first have to
author the contract online and then copy the same to a file, compile,
and deploy manually to a private network. Let's explore Remix by
performing the following steps:

1. Navigate to remix.ethereun.org and the site will open in a
browser with a default contract as shown in the following

screenshot. If you do not need this contract, it can be
deleted:

http://remix.ethereum.org
https://github.com/ethereum/browser-solidity
http://remix.ethereum.org

+
€2 browserballotsol

X

1 bragma solidity "0.4.0;
2+ contract Ballot {

-

(= e e =0, e — i W

9
10+
11
12
13
14
15
16
17
18
19+
2
il
2
23
i
25
26
e
28
2
3
il

v 0

struct Voter {
uint weight;
bool voted;
uint8 vote;
address delegate;
}
struct Proposal {
uint voteCount,

}

address chairperson;
mapping(address =) Voter) voters;
Proposal[] proposals;

/]| Create a new ballot with $(numProposals) different proposals.
function Ballot(uint8 nunProposals) public {

chairperson = msg.sender,

voters[chairperson].weight = 1;

proposals. length = _nunProposals;
}

/] Give §(toVoter) the right to vote on this ballot,

/]| May only be called by §(chairperson).

function giveRightToVote(address tolioter) public
if (nsg.sender = chairperson || voters[toVoter].voted) return;
voters[toVoter].eight = 1;

}

AT A A Y S STV SO Y N SN SO Y A

[2] only remix transactions, seript ¥ Q Search ransactions

Listen on network

2. The first thing we need to do is to create a new contract by
selecting + from Remix's left menu bar.

3. Then, provide a name for a new Solidity file that has an
extension .so1. Name the contract weriowor1d and click on OK
to continue as shown in the following screenshot. This will
create a blank contract:

@Googe(hromeisn'lyourdefaulbrowser. Wil

Ok G

4. Type the following code in the empty authoring pane to
create your first contract. This contract will be explained in
detail in chapter 3, Introducing Solidity. For now, it is

sufficient to understand that the contract is created using
the contract keyword; you can declare global state variables
and functions; and contracts are saved with the .so1 file
extension. In the following code snippet, the vei1oworid
contracts returns the neiiowor1d string when the cetHe11owor1d
function is called:

pragma Solidity 70.4.18;
contract Helloworld
{

string private statevariable = "Hello World";
function GetHelloworld() public view returns (string)

{

return stateVariable;

b
b

Look at the action window to the right of Remix. It has got
several tabs—Compile, Run, Settings, Debugger, Analysis,
and Support. These action tabs help in compiling, deploying,
troubleshooting, and invoking contracts. The Compile tab
compiles the contract into bytecode—code that is understood
by Ethereum. It displays warnings and errors as you author
and edit the contract. These warnings and errors are to be
taken seriously and they really help in creating robust
contracts. The Run tab is the place where you will spend the
most time, apart from writing the contract. Remix comes
bundled with the Ethereum runtime within the browser. The
Run tab allows you to deploy the contract to this runtime
using the JavaScript VM environment in

the Environment option. The Injected Web3 environment is
used along with tools such as Mist and MetaMask, which will
be covered in the next chapter, and Web3 Provider can be
used when using Remix in a local environment connecting to
private network. In our case for this chapter, the default,
JavaScript VM is sufficient. The rest of the options will be

discussed later in chapter 3, Introducing Solidity.

5. However, the important action is deployment of a contract
and that can be done using the Create button to deploy the
contract that is shown in the following screenshot:

. browser/HelloWorld.sol .

1 pragma solidity "0.4.18;

2

3 contract HelloWorld

4+ {

5

6 string private statevariable = "Hello World";
I

8 v function GetHelloWorld() public view returns (string){
9 return stateVariable;

10

11 }

12}

6. Click on the Create button to deploy the contract to the
browser Ethereum runtime and this will list all the functions
available within the contract below the Create button. Since
we only had a single function cette11owor1d, the same is
displayed as shown in the following screenshot:

(1

- browserIHelloWorld.sol’t

) (gl R e s D S

W | o

relollon v

7. Click on the GetHelloWorld button to invoke and execute
the function. The lower pane of Remix will show the results
of execution as shown in the following screenshot:

HelloWorld v
Create
Load contract from Address At Address
0 pending transactions E] = ’
X
v HelloWorld at 0x692...77b3a (memory) B

GetHelloWorld

Congratulations, you have created, deployed, and also executed a
function on your first contract. The code for the ei1owor1d contract is
accompanied with this chapter and can be used in Remix if you are
not interested in typing the contract.

How are contracts deployed?

Remix makes deployment of contracts a breeze; however, it is
performing a lot of steps behind the scenes. It is always useful to
understand the process of deploying contracts to have finer control
over the deployment process.

The first step is the compilation of contracts. The compilation is
done using the Solidity compiler. The next chapter will show you
how to download and compile a contract using the Solidity
compiler.

The compiler generates the following two major artifacts:

¢ ABI definition

e Contracts bytecode

Think of the Application Binary Interface (ABI) as an interface
consisting of all external and public function declarations along
with their parameters and return types. The ABI defines the
contract and any caller wanting to invoke any contract function can
use the ABI to do so.

The bytecode is what represents the contract and it is deployed in
the Ethereum ecosystem. The bytecode is required during
deployment and ABI is needed for invoking functions in a contract.

A new instance of a contract is created using the ABI definition.

Deploying a contract itself is a transaction. A transaction is created
for deploying the contract on Ethereum. The bytecode and ABI are

necessary inputs for deploying a contract.

As any transaction execution costs gas in Euthereum, appropriate
quantity of gas should be supplied while deploying the contract. As
and when the transaction is mined, the contract is would be
available for interaction through contract address.

Using the newly generated address, callers can invoke functions
within the contract.

Summary

This chapter was an introduction to blockchains and, more
specifically, to Ethereum. Having a good understanding of the big
picture about how blockchains and Ethereum work will go a long
way in understanding how to write robust, secure, and cost effective
smart contracts using Solidity. This chapter covered the basics of
blockchain, explained what blockchains are, why blockchains are
important, and how they help in building decentralized and
distributed applications. The architecture of Ethereum was
discussed in brief along with some of the important concepts such
as transactions, blocks, gas, Ether, accounts, cryptography, and
mining. This chapter also touched briefly on the topic of smart
contracts, using Remix to author smart contracts and how to
execute them using Remix itself. I've kept this chapter brief since
the rest of the book will explain these concepts further and it will
allow you to quickly develop Solidity-based smart contracts.

You'll notice that this chapter does not contain any mention of
Ethereum tools and utilities. This is what we will cover in the next
chapter, by diving straight in and installing Ethereum and its
toolset. The Ethereum ecosystem is quite rich and there are lots of
tools. We will cover important ones, such as webs. js, TestRPC, Geth,
Mist, and MetaMask.

Installing Ethereum and
Solidity

In the previous chapter, we had an overview of all major concepts
related to blockchains, particularly focusing on ones related to
Ethereum and discussed the fundamentals related to working with
blockchains in general. Ethereum-based blockchain solutions can
be deployed to multiple networks. They can be deployed on public
networks, test networks, or private networks. This chapter focuses
on introducing and deploying Ethereum-based tools and utilities
that are needed for building Ethereum-based solutions. There are
plenty of tools in the Ethereum ecosystem and this chapter will
focus on some of the most important and necessary tools. The tools
will be deployed on Windows Server 2016 on Azure Cloud.
However, they can be deployed on Linux, Mac, and any virtual
machine or physical computer, as well. This will also be used as our
development environment for testing, deploying, creating, and
using Solidity contracts throughout this book.

In this chapter, we'll cover the following topics:

¢ Introducing Ethereum networks

Installing and configuring Geth

Creating a private network

Installing and configuring TestRPC

Installing Solidity compiler—solc

Installing webs framework

¢ Installing and working with Mist

¢ Installing and working with MetaMask

Ethereum networks

Ethereum is an open source platform for creating and deploying
distributed applications.

Ethereum is backed up by a large number of computers (also known
as nodes)—all interconnected and storing data in a distributed
ledger. Distributed ledger here means that a copy of this ledger is
available to each and every node on the network. It provides
flexibility to its developers to deploy their solution to multiple
types. Developers should choose an appropriate network based on
their requirements and use cases. These different networks also
help in deploying solutions and smart contracts on networks that do
not actually cost any Ether or money. There are networks that are
free of cost while there are ones that require its users to pay in
terms of Ether or other currencies for its usage.

Main network

The main Ethereum network is a global public network that
anybody can use. It can be accessed using an account and everybody
is free to create an account and deploy their solutions and smart
contracts. Using a main network incurs costs in terms of gas. The
main network is known as Homestead and was earlier known as
Frontier. This is a public chain accessible over the internet and

anybody can connect to it and access both data and transactions
stored in it.

Test network

A test network exists to help facilitate and increase adoption of
the Ethereum blockchain. They are the exact replica of the main
network. Using these networks does not cost anything for
deployment and usage of contracts. They are completely free of
cost. This is because test Ethers can be generated using faucets and
used on these networks. There are multiple test networks available
at the time of writing, such as Ropsten, Kovan, and Rinkeby.

Ropsten

Ropsten is one of the first test networks that use PoW consensus
methods for generating blocks. It was earlier known as Morden. As
mentioned before, it is completely free of cost for usage and it can
be used during the building and testing of smart contracts. It can be
used by using the --testnet option available in Geth. Geth will be
explained in detail in the next section. This is by far the most
popular test network.

Rinkeby

Rinkeby is another Ethereum-based test network that uses PoA as
its consensus mechanism. PoW and PoA are different mechanisms
for building consensus among miners. PoW is robust enough to
maintain immutability and decentralization of data; however, it has
drawbacks in not having enough control over miners. PoA, on the
other hand, has all the benefits of PoW along with having more
control over the miners.

Kovan

Kovan test networks can only be used by parity clients and hence
won't be discussed or used in this book. However more information
is available at https://kovan-testnet.github.io/website/.

https://kovan-testnet.github.io/website/

Private network

A private network is created and hosted on a private
infrastructure. Private networks are controlled by a single
organization and they have full control over it. There are solutions,
contracts, and use cases that an organization might not want to put
on a public network even for test purposes. They want to use private
chains for development, testing, and production environments.
Organizations should create and host a private network and they
will have full control over it. Further in this chapter, we will see how
to create your own private network.

Consortium network

A consortium network is also a private network, however, with a
difference. The consortium network comprises nodes, each
managed by a different organization. In effect, no organization has
a control over the data and chain. However, it is shared within the
organization and everyone from these organizations can view and
modify the current state. These might be accessible through the
internet or completely private networks using VPN.

Geth

Implementation of Ethereum nodes and clients is available in
multiple languages, including Go, C++, Python, JavaScript, Java,
Ruby, and more. The functionality or usability of these clients are
the same across languages, and developers should choose an
implementation they are most comfortable with. This book uses the
Go implementation known as Geth, which acts as an Ethereum
client to connect to public and test networks. It is also used to create
the mining and EVM (transaction nodes) for private networks. Geth
is a command-line tool written in Go for creating a node and miners
on a private chain. It can be installed on Windows, Linux, and Mac
as well. Now, its time to install Geth.

Installing Geth on Windows

The first step in creating a private Ethereum network is to
download and install Geth (go-ethereum) tool.

In this section, the steps to download and install Geth on Windows
are as follows:

1. Geth can be downloaded from the nttps://ethereum.github.io/go-et
hereun/downloads/ page. It is available for both 32 and 64 bit
machines. Windows Server 2016 on Azure is used for all
purposes in this book.

2. After downloading, start the installation process by
executing the executable and follow the steps, accepting the
defaults. Install development tools as a recommended
practice on development environments.

3. Once Geth is installed, it should be available from Command
Prompt or PowerShell.

4. Open Command Prompt and type geth -heip.

A word of caution here—just typing Geth and executing it will connect Geth
to a public main network and it will start syncing and downloading all the
blocks and transactions.

The current chain has more than 30 GB of data. ne1p will show all
the commands and options available with Geth. It will also show the
current version as shown in the following screenshot:

https://ethereum.github.io/go-ethereum/downloads/

B Administrator; Command Prompt

Microsoft Windows [Version 10.0,14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Users\citynextadmin>geth help
NAME :
geth - the go-ethereum command line interface

Copyright 2013-2017 The go-ethereum Authors

USAGE:
geth [options] command [command options] [arguments...]

VERSION:
1.7.2-stable-1dbdecdc

COMMANDS :
account Manage accounts
attach Start an interactive JavaScript environment (connect to node)
bug opens a window to report a bug on the geth repo
console Start an interactive JavaScript environment
copydb Create a local chain from a target chaindata folder
dump Dump a specific block from storage
dumpconfig Show configuration values
export Export blockchain into file
import Import a blockchain file
init Bootstrap and initialize a new genesis block
js Execute the specified JavaScript files
license Display license information
makecache Generate ethash verification cache (for testing)
makedag Generate ethash mining DAG (for testing)
monitor Monitor and visualize node metrics
removedb Remove blockchain and state databases
version Print version numbers
wallet Manage Ethereum presale wallets
help, h Shows a list of commands or help for one command

Geth is based on JSON RPC protocol. It defines the specification for
remote procedure calls with payload encoded in JSON format. Geth
allows connectivity to JSON RPC using the following three different
protocols:

¢ Inter Process Communication (IPC): This protocol is
used for inter process communication generally used within
the same computer.

¢ Remote Procedure Calls (RPC): This protocol is used
for inter process communication across computers. This is
generally based on TCP and HTTP protocol.

e Web Sockets (WS): This protocol is used to connect to
Geth using sockets.

There are many commands, switches, and options for configuring
Geth, which include the following:

e Configuring IPC, RPC, and WS protocols

e Configuring network types to connect—private, Ropster, and
Rinkeby

e Mining options

¢ Console and API

e Networking

e Debugging and logging

Some of the important options for creating a private network will be
discussed in the next section.

Geth can be used to connect to a public network by just running cetn
without any options. Homestead is the current name of public

Ethereum. Its networkid and chain1o is 1 as shown in the following

The following are the network IDs used for connecting to the

following different networks:

The chain ID 1 represents a Homestead public network

The chain ID 2 represents Morden (not used anymore)

The chain ID s represents Ropsten

The chain ID 4 represents Rinkeby

The chain ID above 4 represents a private network

Geth provides the --testnet Option to connect to a Ropsten network
and the --rinkeby Option to connect to the Rinkeby option. These
should be used in conjunction with the networkia command option.

Creating a private network

After Geth is installed, it can be configured to run locally without
connecting to any network on the internet. Every chain and network
has a genesis block or the first block. This block does not have any
parent and is the first block of the chain. A genesis. json file is required
to create this first block. A sample genesis. json file is shown in the
following code snippet:

{

"config": {

"chainId": 15,
"homesteadBlock": O,
"eip155Block": O,
"eip158Block": ©

+

"nonce": "Ox0000000000000042",
"mixhash":
"Ox0000000000000000ENOENOAONEENEENOENOAOOAENEENEENOEOONBEONBENBENBEO",
"difficulty": "Ox200",

"alloc": {3},

""coinbase": "Ox0000000000000000000000000O0NOEEOOOOOEEOOO",
"timestamp": "Ox00",

"parentHash":

"OX000000000000000EEONNOEEONOOEEEONNEEEONNOAEONNBEEENONNAEEOOOOBEEEE",
"gasLimit": "oxffffffff",

"alloc": {

3

3

Let's take a look at the following steps to create a private network:

1. The genesis.json file should be passed to Geth to initialize the
private network. The Geth node also needs to store the
blockchain data and account keys. This information should
also be provided to Geth while initializing the private

network.

2. The following geth init command initializes the node with the
genesis. json file and target data directory location to store the
chaindata and keystore information:

C:\Windows\system32>geth init "C:\myeth\genesis.json" --datadir
"C:\myeth\chaindata"

The preceding command line will generate the following
output:

it s i 0.8
) 415 Kot Cprton A s s

\mwymgmm"mmumsdmwmmmmw

042 o e e R
mMNMMHmmMM&s {1 ettt et o el
04 e oo g

mMNWMMMMMymm BT

I‘
-
-
-
-

i
i
s
2
I
0] sl e s it Tt
005 ot e e g {1 et ettt el el
40 i ot sl O
2
1
!

0
0
0
D0 i i o e

L4
L4
L
Bl

20 sl e s et BT

s e,

3. After the Geth node is initialized with the genesis block as
shown in the preceding screenshot, Geth can be started.
Geth uses IPC protocol by default and will be enabled. For

ensuring that the Geth node is reachable using RPC
protocol, RPC options need to be provided explicitly.

4. For setting up an environment as a Geth node, execute the
following command line:

geth --datadir "C:\myeth\chaindata" --rpc --rpcapi "eth,web3,miner,
admin, personal,net" --rpccorsdomain "*" --nodiscover --networkid 15

The preceding command line will generate the following
output:

ROt Conmard ot - et - st e o™ o0, = 0 X

pain **" - todistover -nebionkid 1

02288 i e cot 5 LERD toal=l

B2 50) St et e <V, Lt LeAL0e o -ndh .9
2

02585 M Located cace and e ol < et cheidate gt | chaindet o8

il

0 258) Titalised e corfgtion 3
dlse P15 adl IPLSS: EIRLSR O Byzantm: <nil Engin: nin

02505 ik storge: erbld for et cate (12

[120845) ik storae evtld for ethsh s £
[12:345) Titelisig Eeren prtu 1] etontel
[2035) Louded st ecnt ol e = =BT, e 402

! a0 15 onestead: 0 00: <ol DNSipoor
)
0
0
0
0
[12:085) Loued st et Loal. ol bk = i <BATIR e a3
!
0
!
0
!
0

(
i
| chaindeta et ftash court=

s citynentadundApatal Echash cou =)

3Msnmmmﬂmmmm EE T
5 Lot Loal trnsiction o] =) gyt

5 Regneratd Loal. trnsaction ol =ttt

5 Stating 20 kg

L
L

|
|
i
|
|

1 {27,0.0.1:8505 conse® vhostselocalhost

]
|
4
P

2
l
l
l
l
2
l
l
l
B8] HTIPentoint pened
l

8
@@ b
U122
3| 1026
W3 L2128
W3\ 10:8
W3 L0:2:
U3 L0:2:
W3 10:26:
U3 L212:
W3 106

0,

mmwawmmwwmmmd
fhoch

|t

3 iy |
IREE mhm iUy L
eGSR TG oL SS9
WJMBSHPWM t e 21\

[
|
|
|
|
|
|
|
|
)

BBdct

afbie - s
\

2
2
2
2
2
2
2
2
2
2
dnsole I
2

)
STEACTT
it
Il

There are a lot of important activities happening when this
command is executed. The command is executed with

the datadir information, enabling RPC, modules, and APIs
that are exposed from this node instance when using RPC to
connect, and networkid Of 15 denoting that it is a private
network. The result of executing this command also provides
useful insights. First, the etherbase or coinbase is not set.
The coinbase or etherbase account should be created and set
before mining is started. As of now, mining has not started
although it was possible to auto-start mining with this
command itself. The information about current database
location is printed on the screen. The output also

displays chainto and whether it is connected to a Homestead
public network. A value of zero means it is not connected to a
Homestead network. The output also contains the enode
value, which is a node identifier on the network. If more
nodes want to join this network, they should provide this
enode value to join this chain and network. Toward the end,
the output shows that both IPC and RPC protocols are up
and running and accepting requests. The RPC endpoint is
available at nttp://127.0.0.1:8545 OT http://localhost:8545 and IPC is
available at \\.\pipe\getn.ipc. Take a look at the following
command line:

geth --datadir "C:\myeth\chaindata" --rpc --rpcapi
"eth,web3, miner, admin, personal, net" --rpccorsdomain "*" --nodiscover
--networkid 15

5. The preceding command will get the private Ethereum node
up and running. However, astute readers will notice that the
command runs as a service. Additional commands cannot be
executed through it. To manage existing running Geth
nodes, open another command window on the same
computer and type the ceth attach ipc:\\.\pipe\geth.ipc command

for connecting using IPC protocol. You will get the following
output:

B Advintator Command ot - geth et el gehi

\Users\citynextadnimgeth attach
Fatal Unable to attach to remote geth: no knoim transport for URL Schene ‘¢’

\Usens\citynextadninigeth attach 1pe:\\. \pine\geth.ipe
eleone 10 the Geth JavaScript console!

instance: Geth/v8,1-stable-1e674108 indows-andsd god. .
modles: aanin:1,0 debug:1,0 eth:L,0 niner:1,0 net: 1,0 personal:1.0 mpe:L.0 tipool: 1,0 etd: 1.0

6. To connect to a private Geth instance through RPC
endpoint, use the command ceth attach rpc:http://localhost:8545
O USE Geth attach rpc:http://127.0.0.1:8545 t0 connect to a local
running instance of Ethereum. If you see a different output
than shown here, it's because the coinbase account is
already set in my case. Adding a coinbase account is shown
later in this section.

7. The default RPC port on which these endpoints are hosted is
ss45, which can be changed using the -rpcport Geth command

line option. The IP address can be changed using the -rpcaddr
option:

Y Administrator: Command Prompt - geth attach rpchttp://127.0.0.1:8545

C:\Users\citynextadmin>geth attach rpc:http://127.0.0.1:8545
Welcome to the Geth JavaScript console!

instance: Geth/v1.7.2-stable-1dbdecdc/windows-amd64/gol.9

coinbase: 0x3d878119b2cda3b8cab@55861713cd100efbe71c

at block: 148 (Sun, 12 Nov 2017 09:23:42 GMT)

datadir: C:\myeth\chaindata

modules: admin:1.0 eth:1.0 miner:1.0 net:1.0 personal:1.0 rpc:1.0 web3:1.0

8. After connecting to a Geth node, it's time to set up the
coinbase or etherbase account. For this, a new account
should be created first. To create a new account, use
the newaccount method of the persona1 object. While creating a
new account, provide passphrase that acts like a password for
the account. The output of this execution is the account ID
as shown in the following screenshot:

> personal.newAccount()
Passphrase:

Repeat passphrase:

9. With the account ID provisioned, it should be tagged as a
coinbase or etherbase account. To do this, the Geth provider
has to change the coinbase address.miner Object with
the setethersase function. This method will change the current
coinbase to the provided account. The output of the
command is true OT faise as shown in the following
screenshot:

> miner.setEtherbase("0xe14d4d757d493d300b11de058f7cbad64coeffc8")

true
>

10. Now run the following query to find the current coinbase
account by executing the following command:

eth.coinbase

It should output the same account address that was recently
created as shown in the following screenshot:

> eth.coinbase

With the coinbase set with a valid account and Geth node up
and running, now mining can get started and, since we just
have one miner, all rewards will go to this miner and its
coinbase account will be credited with Ethers.

11. To start mining, execute the following command:

I miner.start()
You can also use the following command line:
| miner.start(4)

The preceding command line generates the following output:

> miner.start(4)
null

>

The parameter to the start method represents the number of
threads used for mining. This will result in mining getting
started and the same can be viewed from the original
command window:

12. Mining can be stopped from the second command window

using the miner.stop() command.

ganache-cli

There are following two distinct phases in the overall modification
and writing of transactions to a ledger using Ethereum:

o The first stage is about creating a transaction and putting
the transaction in a transaction pool.

¢ The second phase that happens periodically is to get all
transactions from a transaction pool and mine them. Mining
here means writing those transactions to the Ethereum
database or ledger.

From this description, it would be a time-consuming process if the
same process is used for development and testing purposes. To ease
the process of development and test of solutions and smart
contracts on Ethereum, ganache-cli was created. It was earlier
known as TestRPC. ganache-cli by itself contains both the
Ethereum transaction processing and mining functionality.
Moreover, there is no waiting period for mining of transactions. The
transactions are written as they are generated. It means developers
can use ganache-cli as their Ethereum node and do not need mining
activity to write transactions to a ledger. Instead, the transactions
are stored in a ledger as they are created.

ganache-cli is dependent on Node.js and it should be available on
the machine before deploying ganache-cli. If Node.js is not
installed, it can be downloaded from https://nodejs.org/en/download/.
Based on processor architecture (32 or 64 bit) and operating
system, an appropriate package can be downloaded and installed
from the given link as shown in the following screenshot:

https://nodejs.org/en/download/

n de

HOME AROL i i | FOLINDAT ION | GE | IMYOLYED SECLRITY HEWS

Downloads

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS Current
Recommended For Most Users Latest Features
/
e ¢ ¥
Windows Installer Macintosh Installer Source Code

Windows Installer (.msi) 32-bit G4-bit
Windows Binary (.zip) 32-bit G4-bit
macOS$ Installer (.pkg) 64-hit
mac0$ Binaries (.tar.gz) 64-bit
Linux Binaries (x86/x64) 32-bit G4-bit
Linux Binaries (ARM) ARMvA ARMyT ARMvE

Here, we have downloaded the 64 bit version of MSI Windows
installer and both node package manager (NPM) and Node.js
are installed using it.

The Node.js version is vs.s.1 as shown in the following screenshot:

C:\Users\citynextadmin>node --version
3. 9.1

C:\Users\citynextadmin>_

The npm version is s.5.1 as shown in the following screenshot:

C:\Users\citynextadmin>npm --version
Se el

C:\Users\citynextadmin>_

ganache-cli can be installed using the following npn insta11 command:

npm install -g ganache-cli

The preceding command line generates the following output:

:\Users\citynextadmin>npm install -g ganache-cli
babel-preset-es2015@6.24.1: ER
nomnom@l.8.1: Package no longe

hpm webpack-cli@2.0.13 requires a peer of webp

ganache-cli@6.1.0
dded 492 packages in 70.513s

After installation of ganache-cli, an Ethereum node based on it can
be started using the following command:

ganache-cli

The result of executing the preceding command is that it creates 10
accounts by default, each having 100 Ether in balance with them,
and it can be used just the way any other private network is used as
shown in the following screenshot:

:\Users\citynextadmin>ganache-cli
anache CLI v6.1.0 (ganache-core: 2.1.0)

Available Accounts

0xb2d4fc1bd4971715d4bf67662926b603060fa7e5
0x400ed4d8alaffcec6495bdab627092c1399c5897
0x9502159df7cf412132c0b79200ead78b2357dc37
0xb260a5fedbe2c32667553f836cdcob52d74befad
0x5954c37e2c5dacc2e5a67dc548fd9a393ae70cb7
0x919064d0e6fb2b157db28b6d042415087b834Ff1
0xfc8279e0a9976bd51516310b64f23e7459a8cdo0
0xcb4ad724e7e38c1d31770d64578fa50658153219
0xcce2e065b44d865cbff56a746680bf883137027a
0x8falb27a7458a5f5¢cc707763d95cbaed7cfd87d4

2694d75fa257a63a2e6dalel4ffob85dcach7885a659b10e92902541ad433769
€99109f2e419d9243ab319563946b19debfbf39b7808748c65a120a9216597e4
bd448b10725f555f14fbce@b43ce6e04bdd8386926eabb6d1682855b23d52ede
7¢7f645f2aedc3fd89226af07f3b6ae599badf5a74021b377b250f1ad8e3e6a0
02cc9183052130e00a95d5f02c6053b9f6c7bc2d40bcbOc454c8cf7f9f48d81c
a8a2984b371d5deb4db984e3ac7dcee7a2ab730a2025aef0cf9ead75c74ecle?
eadc6697222450bc2cfeeceb999e6ad9099fd9916f801ef567¢c67677fcfob4ld2
f8e486cdff58764bd28d73a855473¢c29cabf3316076777ef54e858428e64295¢e
481186bd532f8d3¢c9149dbbe8e3afd4dat74034a3d368a17606b38fc6c4e7686
fe5fc2dd37407169bf512622a7bab6alb70ab54c9c3bbbab6e410c10304dcbba

Another command window can be used along with the Geth
command line to attach to it, just like in the following screenshot:

¥ Administrator. Command Prompt - geth attach rpchttp://127.0.0.1:8545

C:\Users\citynextadminygeth attach rpc:http://127.0.0.1:8545
Welcome to the Geth JavaScript console!

» Geth/v1.7.2-stable-1dbdecdc/windows-amd64/gol.9
» 0x30d878119b2cda3b8cab@55861713cd100efbe71c

» 148 (Sun, 12 Nov 2017 09:23:42 GNT)
datadir: C:\myeth\chaindata
modules: admin:1.0 eth:1.0 miner:1.0 net:1.0 personal:1.0 rpc:1.0 web3:1.0

Solidity compiler

Solidity is one of the languages that is used to author smart
contracts. Smart contracts will be dealt with in detail in the
following chapters. The code written using Solidity is compiled
using a Solidity compiler, which outputs byte code and other
artifacts needed for deployment of smart contracts. Earlier, Solidity
was part of the Geth installation; however, it has moved out of Geth
and should be deployed using its own installation.

The Solidity compiler also known as so1c can be installed using npm:

npm install -g solc

The preceding command line generates the following output:

The web3 JavaScript library

The webs library is an open source JavaScript library that can be used
to connect to Ethereum nodes from the same or a remote computer.
It allows IPC as well as RPC to connect to Ethereum nodes. webs is a
client-side library and can be used alongside a web page and query
and can submit transactions to Ethereum nodes. It can be installed
using the node package manager as a node module like the Solidity
compiler. At the time of writing, the latest version of webs is broken
and does not install appropriately because of the missing signumber. js
file. However, previous stable versions can be used for connecting
web applications to backend Ethereum nodes. Let's take a look at
the following steps to install the webs JavaScript library:

1. The command used to install webs is as follows:

npm install web3@0.19

The preceding command generates the following output:

2. After webs is installed, it can be used using Node.js. From
Command Prompt, enter the node workspace by executing
the node command as shown in the following screenshot:

C:\Users\citynextadmin>node

>

3. Once in the node workspace, type the following commands
to connect to an Ethereum node. The Ethereum node could
be TestRPC or a custom Geth-based private network. webs

can use WebSockets, IPC, or RPC to connect to an Ethereum
node. The following example shows the RPC endpoint
protocol used to connect webs to an Ethereum node:

var Web require('web3')
var web new Web (new

Web.providers.HttpProvider('http://localhost:8545'))

The first command loads the webz module and the second
command creates an instance of uttperovider and connects to
the local hosted Ethereum node on port ssas.

4. To ensure that webs is actually connected to an Ethereum
node, execute the isconnected method. If it returns true then it
means that webs is connected as shown in the following
screenshot:

B Administrator: Command Prompt - node

Microsoft Windows [Version 10.0.14393]

(

c) 2016 Microsoft Corporation. All rights reserved.

C:\Users\citynextadmin>node
> var Web = require('web3")

> var web = new Web (new Web.providers.HttpProvider('http://localhost:8545"))

> web.isConnected()

>

Mist wallet

Ethereum works with Ether cryptocurrency and a wallet is required
to send and receive Ether. Mist is an implementation of the same.
Mist is a wallet used to send and receive Ether. It helps in executing
transactions on the Ethereum network. The network can be public
or private. It allows users to create their accounts, send and receive
Ether, and deploy and invoke contracts.

Mist can be downloaded from https://github.com/ethereum/mist/releases.
Download an appropriate ZIP file (in this case it iS ethereun-wallet-
wine4-0-9-2.zip since we are deploying on Windows 2016) and extract
to a file location. Double-click on the Ethereum Wallet application
from the extracted files as shown in the following screenshot:

| v B+ Application Tools Win unpacked
File Home Share View Ianage
- v 4 ¥ ThisPC ¥ Local Disk (C) * Ethereum-Wallet-win64-0-9-2 * win-unpacked ¥
O Name Date modified Type Size
7 Quick access | DINK_Mage_resources_<UU_percentpak |1/ 142011 1191 A, FAKFIIE 29 R
mDesktop + | content_resources_200_percent pak NA22017 751 A PAKFile 1K8
% Downloads ~ # | content shell pak 112207 751 A, PAKFile 11736 KB
D &g | d3dcompiler_47.dI 1171202017 751 A, Apolication extens.. 4077 KB
4 Documents
1€ Ethereum Wallet 11/12/2017 7:51 A... Application 78,827 KB
= Pictures -
| fimpeg il 112207 751 A Application extens.. 1915 KB
BThisPC | icudt| dat 1M/12/2017 751 A, DAT File 9894 KB

This should start Mist. Mist is an intelligent wallet. If a private
chain is running on a local machine then it can identify the same
and connect to it. If there is no local network running, then it will
connect to the main network or Rinkeby test network:

https://github.com/ethereum/mist/releases

Ethereum is a platform for
decentralized blockchain apps with
a fully featured programming
language

USE THE MAIN NETWORK
You'll need some Ether to create and
v execute contracts. Don't worry, we'll

help you get some...

ethereum

USE THE TEST NETWORK

(RINKEBY)

Test the technology freely in a
sandboxed testnet, without using real
Ether.

Looking for peers...

However, if a private network is available, it will connect to it as
shown in the following screenshot:

PRIVATE-NET |

Ethereum node needs to sync, please wait...

Looking for peers...

LAUNCH APPLICATION

Once connected, it can be used to interact with an Ethereum
network by sending and receiving Ether, and deploying and
invoking functions of smart contracts:

O cheoum Wallt =
Fthereum Wallet Fle kit View Develop Window Help

&l ® M BALANCE

WALLETS SEND Mpesrs | B QA3min s celast hock CONTRACTS 265.00 1w

Accounts Overview

ACCOUNTS

Araur s ane passisrd role.ed e el oen bl Fher and Flhereun Lasead dosens, They cancuniral conlias, sulcan Lo splayineming ransalicnes,

& MAIN ACCOUNT (ETHERBASE)

JER Q0 ster

ADD ACCOUNT

WALLET CONTRACTS

hiscnnirzels sard anhe Sleehat and ean held and seere sthe ey ean s alline gee sasonners an keep a 1 op ofal lransa ians

MetaMask

MetaMask is a lightweight Chrome browser-based extension that
helps in interacting with Ethereum networks. It is also a wallet that
helps in sending and receiving Ether. MetaMask can be downloaded
from nttps://metamask.ios. Since MetaMask runs in a browser, it does
not download the entire chaindata locally; instead, it stores it
centrally and helps users connect to their store using the browser.
Let's take a look at the following steps:

1. MetaMask should be added as an extension as shown in the
following screenshot:

Add "MetaMask"?

It can:
« Read and change all your data on the websites you visit
« Communicate with cooperating websites

- Modify data you copy and paste

Add extension

https://metamask.io/

2. Accept the privacy notice and terms of use and a small icon
will appear next to the go button. MetaMask allows you to
connect to multiple networks. Connect to the Localhost
8545 private network as shown in the following screenshot:

Main
&t Network

Main Ethereum Network v
Ropsten Test Network

Kovan Test Network

B Rinkeby Test Network

© Localhost 8545

©® Custom RPC

Confirm Password

3. Provide a password to create a new key that is used by
MetaMask to identify the user. It is stored in a key vault at
the MetaMask central server as shown in the following
screenshot:

Private
‘ 9 Network

METAMASK

Encrypt your new DEN &

CREATE

Import Existing DEN

4. Click on the Account icon and import all already created
accounts using the Import Account menu in MetaMask:

T o | g o g, Gz
= L M C:\myeth)\chaindatz\keystore] ‘U Search keystore P e
Organize~ New folder -0 e
Account1 p : ¢
mDesktop Name
g Account 2 BDocieats UTC--2017-11-12105-5-55 2015808002 346781 1952cde3b8cabl35B617 e
LOOSE + Downloads UTC-2017-11-12107-3-19.2592592002-0c65756041b1c8bcMSTcebicd 719
DMusic
Create Account F v
1 Videas
|mp0l‘t Account £ LoalDisk(C) v ¢ ' . 3
Used by a variety of different clients
File name: UTC.-2017-11-12107-58-19259258; Al e #
Cancel
Choose File UTC-2017-1...918fe62d19

No transaction history.

5. After all the accounts are created, MetaMask can be used to
transfer Ether from one account to another using Ethereum
transactions.

6. For sending Ether from one account to another, select an
account and click on the Send button. On the resultant
window, provide a target account address, amount, and click
on the Next button:

i
i
i

i

3[4:25:28] Comit ne ining vk
1] Succassfully sealed new black
3[04:25:27) 2 block reached canonical chai
1] B nined potential block
7] Comt new nining work
8] Succassfully sealed new block
8] 28 block reached canonical cha
ﬂmm otential lock

MlZommmmm

il

2
2
2
2
2
2
P[5
2

b
b
b
b
b
B
b
B
)

D03 4:25:31] Sucessfully sealed ne block

3[04:25:31) 2 block reached canonical chai

63/ 14:25:32] 2 nined potentia bloc

i

b
b
b
b
b
b
b
b
4
4
4
4
4

i3 |1
b
L
b
4
4
4
4
4
4
4
4
b
b
b

!
!
!
!
!
!
!
!
!
!
!
!
MHmemmwk
08:34] Succassfully sealed new block
|14
08:34] O nined potential block
25:34] Comnt e nining vk
B[4:25:38] Sucessfully sealed new blck
5[4:25:38] 2 block reached canonica chai
3[4:25:38) 2 ined potential block
B[4:25:38] Comit ne wining ok
B[4:25:38] Sucessfully sealed new blck
5[4:25:38] 2 block reached canonica chai
3[4:25:38) 2 ined potential block
B[4¢25:38] Comit ne wining ok
08:44] Suecassfully sealed new block
35:41] 28 block reached canonical
!

|
4] 28 block reached canonical cha
4
4

il

)
)
B
B
B
b
)

)
)
3
)
3
}

il

j

5
B
;

Lt mmmmmmm

100
1009 ash=Bhe83a.63ecf

o83, 63ec
000¢5F. 83301

= U=
=}faaa. folcd
3030a7.06
=i,

0bt3
foled
3
ﬁMHm
=fhadde.30eac
=fefR81. 065950
= Unc o=

=b 1638, calthd
=043t 5f2ale
=b 1538, callhd
= U=

=638073..92801
eS8, FLL06
=593073..e92801

1L
[m
_—

il
<1013

Account 2
D5522.0%eB Account 3
Aoe301. 76D

200840
Ll 065
Gas L il
Gis Prce 1
Ma Transaction Feg 0
Max Totl

5000626

Data cluec 0 byt

7. Submit the transaction. The transaction will be in a pending
state within the transaction pool. Mining should be started
to write this transaction into the permanent storage.

8. Start mining using the Geth console and the transaction will
be mined as shown in the following screenshot:

e

3|14:25:36] 2 ined potential lock
3|14:25:56] Comit e ining ok
3|14:2:58) Successfully sealed ne block
3|14:25:56) 28 block reachd canonical chai
3|14:25:56) 22 nined potential block
3(14:25:38] Comnit new nining wonk
3|14:25:57) Successfully sealed ne block
3|14:25:57] 20 block peached cannical chdn
ﬂlﬂﬁmdmmm
ﬂ17mmmmmm <1000 tys+t ﬂ
3|14:2:57) Successfully sealed ne blck <1020 hasheLlec.Lfde
il 7%Mmmemw SURERDA
3|14:25:57) 22 nined otential block <1000 hash=Lhecn. L
3|14:%5:57) Mining ton far i the future :
3|14:25:59] Comst e ining ok
3|14:26:08) Successfully sealed ne blck
3|14:25:00] 20 lock peached cannical chdn
3|14:26:0) 2 nined potential block
3|14:25:00] Comit new ninig work
5102601 Suonctted Eranaction
(12 Dedhaehd =0xA6e30181Ff951032Ee8MaE504F5EC27aaBEE765
BT SUCCaSSPULLy sealed v olock BB N AL
3|14:25:08] 20 block peached cannical chin <1018 ash=heSand.eddbd
3|14:26:95) 0 nined otential block <1004 hosh=Gf45ha. 5AT0h
3|14:26:05] Comit s ining ok <1825 fise] uncles=d
3|14:26:98) Successfully sealed ne blck 2l
3|14:26:06] 22 block reachd canonical chain
!
!

:
:
:
:
:
:
:
b
:
:
b
b
b
b
:
b
b
b
:

L e . e e e e S . O o e e e

!
05:]) 1
0
0
0
03] 1
i
0
i
16:00)
5l
il
25
i

0
0

3|14:25:06] 2 wined potential lock

2
4
2
4
2
4
2
-0
2
-4
4
2
4
2
4
2
4
2
-0
2
!
)
2
4
2
4
2
4
<3 14:26:08] Coneit e ining ok

_ = = = = = = =

b
:
:
:
b
b

i}
b
b
b
b
b

Account?

g WIS

After a while the transaction is written in the ledger, and
balances for both the accounts are updated in MetaMask:

o RSk~ =

Account 3 sss
Ox0cBh7..
12.994 ETH BUY m
288353 USD
SENT TOKENS

November 12 2017
Q- 09:17 B 220 £TH

0x3D878119...e71C

Summary

There was a lot of substance covered in this chapter. Ethereum
nodes implement JSON RPC endpoints that can be connected to
using WebSockets, IPC, and RPC. In this chapter, we discussed
various forms of networks—public, main, test, and private. The
chapter also discusses and implements a private network. This
chapter had steps to create a development environment that will be
used later in subsequent chapters. This chapter focuses on
deploying multiple tools and utilities on the Windows operating
system. While each tool has its own working and functionality,
some tools might eventually do the same thing. For example, a
Geth-based private chain and ganache-cli are essentially Ethereum
nodes but with differences. Deployment of Geth, Solidity compiler,
ganache-cli, webs JavaScript framework, Mist, and MetaMask were
covered in this chapter. While some readers will like working with
ganache-cli, others will be interested in using a private Geth-based
Ethereum node. There is another important utility known as Truffle
that will be covered in subsequent chapters.

In the next chapter, we will focus on Solidity as a language, which is
the title of the book. Solidity supports object orientation, provides
both native as well as complex data types, helps in declaring and
defining functions that accept parameters and return values,
provides control structures and expressions, and many more
features. The next chapter will discuss variables and data types in
depth. The variables and data types are core to any programming
language and more so in Solidity since it has to store the same
within the distributed ledger.

Introducing Solidity

From this chapter, we will embark on a journey: learning the
Solidity language. The previous two chapters introduced
blockchains, Ethereum, and their toolsets. Some important
concepts related to blockchains, which are essential for having a
better understanding and writing efficient code in Solidity, were
also discussed. There are multiple languages that target EVM. Some
of them are deprecated and others are used with varying degrees of
acceptance. Solidity is by far the most popular language for EVM.
From this chapter onward, the book will focus on Solidity and its
concepts, as well as constructs to help write efficient smart
contracts.

In this chapter, we will jump right into understanding Solidity, its
structure, data types, and variables. We will cover the following
topics in this chapter:

e Solidity and Solidity files

¢ Structure of a contract

e Data types in Solidity

¢ Storage and memory data locations
e Literals

e Integers

¢ Boolean

e The byte data type

Arrays

Structure of an array
Enumeration
Address

Mappings

Ethereum Virtual Machine

Solidity is a programming language targeting Ethereum Virtual
Machine (EVM). Ethereum blockchain helps extend its
functionality by writing and executing code known as smart
contracts. We will get into the details of smart contracts in
subsequent chapters, but for now, it is enough to know that smart
contracts are similar to object-oriented classes written in Java or
C++.

EVM executes code that is part of smart contracts. Smart contracts
are written in Solidity; however, EVM does not understand the
high-level constructs of Solidity. EVM understands lower-level
instructions called bytecode.

Solidity code needs a compiler to take its code and convert it into
bytecode that is understandable by EVM. Solidity comes with a
compiler to do this job, known as the Solidity compiler or solc. We
downloaded and installed the Solidity compiler in the last chapter
using the Node.js npm command.

The entire process is shown in the following diagram, from writing
code in Solidity to executing it in EVM:

- - Deployed and
Solidity : So"d'_ty * Byte Code Executed on
Code Compiler EVM

We have already explored our first Solidity code in the last chapter,
when writing our reiiowor1d contract.

Solidity and Solidity files

Solidity is a programming language that is very close to JavaScript.
Similarities between JavaScript and C can be found within Solidity.
Solidity is a statically-typed, case-sensitive, and object-oriented
programming (OOP) language. Although it is object-oriented, it
supports limited objected orientation features. What this means is
that variable data types should be defined and known at compile
time. Functions and variables should be written in OOP same way
as they are defined. In Solidity, Cat is different from CAT, cat, or
any other variation of cat. The statement terminator in Solidity is
the semicolon: ;.

Solidity code is written in Solidity files that have the extension .so1.
They are human-readable text files that can be opened as text files
in any editor including Notepad.

A Solidity file is composed of the following four high-level
constructs:

Pragma

Comments

Import

Contracts/library/interface

Pragma

Pragma is generally the first line of code within any Solidity file.
pragma 1S a directive that specifies the compiler version to be used for
current Solidity file.

Solidity is a new language and is subject to continuous
improvement on an on-going basis. Whenever a new feature or
improvement is introduced, it comes out with a new version. The
current version at the time of writing was 0.4.19.

With the help of the pragma directive, you can choose the compiler

version and target your code accordingly, as shown in the following
code example:

pragma Solidity 70.4.19;

Although it is not mandatory, it is a good practice to declare the
pragna directive as the first statement in a Solidity file.

The syntax for the pragna directive is as follows:

pragma Solidity <<version number>> ;

Also notice the case-sensitivity of the directive. Both pragma and
solidity are in small letters, with a valid version number and
statement terminated with a semicolon.

The version number comprises of two numbers—a major build
and a minor build number.

The major build number in the preceding example is 4 and the

minor build number is 19. Generally, there are fewer or no breaking
changes within minor versions but there could be significant
changes between major versions. You should choose a version that
best suits your requirements.

The ~ character, also known as caret, is optional in version
numbers but plays a significant role in deciding the version number
based on the following rules:

e The » character refers to the latest version within a major
version. So, 1 0.4.0 refers to the latest version within build
number 4, which currently would be 0.4.19.

e The » character will not target any other major build apart
from the one that is provided.

e The Solidity file will compile only with a compiler with 4 as
the major build. It will not compile with any other major
build.

As a good practice, it is better to compile Solidity code with an exact
compiler version rather than using ». There are changes in newer
version that could deprecate your code while using » in pragna. For
example, the throw Statement got deprecated and newer constructs
such as assert, require, and revert were recommended for use in newer
versions. You do not want to get surprised on a day when your code
starts behaving differently.

Comments

Any programming language provides the facility to comment code
and so does Solidity. There are the following three types of
comment in Solidity:

¢ Single-line comments
e Multiline comments

e Ethereum Natural Specification (Natspec)

Single-line comments are denoted by a double forward slash //,
while multiline comments are denoted using /+ and +/. Natspec has
two formats: /// for single-line and a combination of /++ for
beginning and +/ for end of multiline comments. Natspec is used for
documentation purposes and it has its own specification. The entire
Speciﬁcation is available at https://github.com/ethereum/wiki/wiki/Ethereum-Nat

ural-Specification-Format.

Let's take a look at Solidity comments in the following code:

// This is a single-line comment in Solidity

/* This is a multiline comment

In Solidity. Use this when multiple consecutive lines
Should be commented as a whole */

In Remix, the pragma directive and comments are as shown in the
following screenshot:

https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format

¢z browser/PragmaAndComments.sol .

pragma solidity 0.4.19;

// This is a single line comment in Solidity

~N Oy U1 Bw o

8 /* This is a multi-line comment

9 In solidity. Use this when multiple consecutive lines
10 Should be commented as a whole */

11

12

13|

The import statement

The import keyword helps import other Solidity files and we can
access its code within the current Solidity file and code. This helps
us write modular Solidity code.

The syntax for using import is as follows:
import <<filename>> ;

File names can be fully explicit or implicit paths. The forward slash
s 1s used for separating directories from other directories and files
while . is used to refer to the current directory and .. is used to refer
to the parent directory. This is very similar to the Linux bash way of
referring to a file. A typical import statement is shown here. Also,
note the semicolon towards the end of the statement in the
following code:

import 'CommonLibrary.sol';

Contracts

Apart from pragma, import, and comments, we can define contracts,
libraries, and interfaces at the global or top level. We will explore
contracts, libraries, and interfaces in depth in subsequent chapters.
This chapter assumes that you understand that multiple contracts,
libraries, and interfaces can be declared within the same Solidity
file. The library, contract, and interface keywords shown in the
following screenshot are case-sensitive in nature:

Structure of a contract

The primary purpose of Solidity is to write smart contracts for
Ethereum. Smart contracts are the basic unit of deployment and
execution for EVMs. Although multiple chapters later in this book
are dedicated to writing and developing smart contracts, the basic
structure of smart contracts is discussed in this chapter.

Technically, smart contracts are composed of two constructs—
variables and functions. There are multiple facets to both variables
and functions and that is again something that will be discussed
throughout this book. This section is about describing the general
structure of a smart contract using the Solidity language.

A contract consists of the following multiple constructs:

e State variables

Structure definitions

Modifier definitions

Event declarations

Enumeration definitions

Function definitions

A typical contract consists of all the preceding constructs. In the
following screenshot, it is to be noted that each of these constructs
in turn consists of multiple other constructs, which will be
discussed in subsequent chapter when these topics are discussed in
detail:

State variables

Variables in programming refer to storage location that can contain
values. These values can be changed during runtime. The variable
can be used at multiple places within code and they will all refer to
the value stored within it. Solidity provides two types of variable—
state and memory variables. In this section, we will introduce state
variables.

One of the most important aspects of Solidity contracts is state
variables. It is these state variables that are permanently stored in a
blockchain/Ethereum ledger by miners. Variables declared in a
contract that are not within any function are called state
variables. State variables store the current values of the contract.
The allocated memory for a state variable is statically assigned and
it cannot change (the size of memory allocated) during the lifetime
of the contract. Each state variable has a type that must be defined
statically. The Solidity compiler must ascertain the memory
allocation details for each state variables and so the state variable
data type must be declared.

State variables also have additional qualifiers associated with them.
They can be any one of the following;:

e internal: By default, the state variable has the interna1 qualifier
if nothing is specified. It means that this variable can only be
used within current contract functions and any contract that
inherits from them. These variables cannot be accessed from
outside for modification; however, they can be viewed. An
example of internal state variable is as follows:

int internal StateVariable ;

e private: This qualifier is like interna1 with additional
constraints. Private state variables can only be used in
contracts declaring them. They cannot be used even within
derived contracts. An example of a private state variable is
as follows:

int private privateStatevariable ;

e nublic: This qualifier makes state variables access directly.
The Solidity compiler generates a getter function for each
public state variable. An example of a public state variable is
as follows:

int public stateIntVariable ;

e constant: This qualifier makes state variables immutable. The
value must be assigned to the variable at declaration time
itself. In fact, the compiler will replace references of this
variable everywhere in code with the assigned value. An
example of a constant state variable is as follows:

bool constant hasIncome = true;

As mentioned previously, each state variable has an associated data
type. A data type helps us determine the memory requirements for
the variable and ascertain the values that can be stored in them. For

example, a state variable of type uints also known as unsigned
integer is allocated a predetermined memory size and it can
contain values ranging from o to 2ss. Any other value is regarded as
foreign and is not acceptable by compiler and runtime for storing it
in this variable.

Solidity provides the following multiple out-of-box data types:

® bool
® uint/int
® pytes
® address
® mapping
® enum
® struct
° bytes/String
Using enum and struct, it is possible to declare custom user-defined

data types as well. Later in this chapter, a complete section has been
dedicated to data types and variables.

Structure

Structures or structs helps implement custom user-defined data
types. A structure is a composite data type, consisting of multiple
variables of different data types. They are very similar to contracts;
however, they do not contain any code within them. They consist of
only variables.

There are times when you would like to store related data together.
Suppose you want to store information about an employee, say the
employee name, age, marriage status, and bank account numbers.
To represent this, these individual variables related to single
employee, a structure in Solidity can be declared using the struct
keyword. The variables within a structure are defined within
opening and closing {3 brackets as shown in the following
screenshot:

/[structure definition
struct myStruct {
string name; //variable fo type string
uint myAge; // variable of unsigned integer type
bool isMarried; // variable of boolean type
uint[] bankAccountsNumbers; // variable - dynamic array of unsigned integer

}

To create an instance of a structure, the following syntax is used.
There is no need to explicitly use the new keyword. The new keyword
can only be used to create an instance of contracts or arrays as
shown in the following screenshot:

human = myStruct("Ritesh",10,true,new uint[](3)); //using struct myStruct

Multiple instance of struct can be created in functions. Structs can
contain array and the mapping variables, while mappings and arrays
can store values of type struct.

Modifiers

In Solidity, a modifier is always associated with a function. A
modifier in programming languages refers to a construct that
changes the behavior of the executing code. Since a modifier is
associated with a function in Solidity, it has the power to change the
behavior of functions that it is associated with. For easy
understanding of modifiers, think of them as a function that will be
executed before execution of the target function. Suppose you want
to invoke the getage function but, before executing it, you would like
to execute another function that could check the current state of the
contract, values in incoming parameters, the current value in state
variables, and so on and accordingly decide whether the target
function getage should be executed. This helps in writing cleaner
functions without cluttering them with validation and verification
rules. Moreover, the modifier can be associated with multiple
functions. This ensures cleaner, more readable, and more
maintainable code.

A modifier is defined using the modirier keyword followed by the
modifier identifier, any parameters it should accept, and then code
within the ¢} brackets. An _ underscore in a modifier means: execute
the target function. You can think of this as the underscore being
replaced by the target function inline. payabie is an out-of-the-box
modifier provided by Solidity which when applied to any function
allows that function to accept Ether.

A noditier keyword is declared at the contract level, as shown in the
following screenshot:

//modifier declaration
modifier onlyBy(){
if (msg.sender == personldentifier) {
o
}
}

As we can see, in the preceding screenshot of the code snippet, a
modifier named on1ysy() is declared at the contract level. It checks
the value of the incoming address using nsg.sender with an address
stored in the state variable. Some things such as msg.sender might not
be understandable to readers; we will cover these in depth in the
next chapter.

The modifier is associated with a getage function as shown in the
following screenshot:

[function definition

function getAge (address personldentifier) jonlyBy()| payable external retumns (vint) {

human = myStruct("Ritesh", 10, true,new uint[)(3)); //using struct myStruct

gender _gender = gender.male; //using enun

}

The getage function can only be executed by an account that has the
same address as that stored in the contract's persontdentifier State
variable. The function will not be executed if any other account tries
to invoke it.

It is to be noted that anybody can invoke the getage function, but
execution will only happen for single a account.

Events

Solidity supports events. Events in Solidity are just like events in
other programming languages. Events are fired from contracts such
that anybody interested in them can trap/catch them and execute
code in response. Events in Solidity are used primarily for
informing the calling application about the current state of the
contract by means of the logging facility of EVM. They are used to
notify applications about changes in contracts and applications can
use them to execute their dependent logic. Instead of applications
they keep polling the contract for certain state changes; the contract
can inform them by means of events.

Events are declared within the contract at the global level and
invoked within its functions. An event is declared using the event
keyword, followed by an identifier and parameter list and
terminated with a semicolon. The values in parameters can be used
to log information or execute conditional logic. Event information
and its values are stored as part of transactions within blocks. In the
last chapter, while discussing the properties of a transaction, a
property named cogss10om was introduced. Events raised as part of a
transaction are stored within this property.

There is no need to explicitly provide parameter variables—only
data types are sufficient as shown in the following screenshot:

// event declaration
event ageRead(address, int);

An event can be invoked from any function by its name and by
passing the required parameters, as shown in the following
screenshot:

Enumeration

The enun keyword is used to declare enumerations. Enumerations
help in declaring a custom user-defined data type in Solidity. enun
consists of an enumeration list, a predetermined set of named
constants.

Constant values within an enun can be explicitly converted into
integers in Solidity. Each constant value gets an integer value, with
the first one having a value of 0 and the value of each successive
item is increased by 1.

An enun declaration uses the enun keyword followed by enumeration
identifier and a list of enumeration values within the ¢3 brackets. It
is to be noted that an enum declaration does not have a semicolon as
its terminator and that there should be at least one member
declared in the list.

An example of enun is as follows:

enum gender {male, female}

A variable of enumeration can be declared and assigned a value as
shown in the following code:

gender _gender = gender.male ;

It is not mandatory to define enun in a Solidity contract. enun should
be defined if there is a constant list of items that do not change like
the example shown previously. These become good example for an
enun declaration. They help make your code more readable and
maintainable.

Functions

Functions are the heart of Ethereum and Solidity. Ethereum
maintains the current state of state variables and executes
transaction to change values in state variables. When a function in a
contract is called or invoked, it results in the creation of a
transaction. Functions are the mechanism to read and write values
from/to state variables. Functions are a unit of code that can be
executed on-demand by calling it. Functions can accept parameters,
execute its logic, and optionally return values to the caller. They can
be named as well as anonymous. Solidity provides named functions
with the possibility of only one unnamed function in a contract
called the fallback function. We will know more about fallback
functions later in the book.

The syntax for declaring functions in Solidity is as follows:

[[function definition
finction getAge (address personldentifier) onlyBy() payable external refumns (uint) {

A function is declared using the function keyword followed by its
identifier—getage, in this case. It can accept multiple comma-
separated parameters. The parameter identifiers are optional, but
data types should be provided in the parameter list. Functions can
have modifiers attached, such as on1ysy() in this case.

There are a couple of additional qualifiers that affect the behavior
and execution of a function. Functions have visibility qualifiers and
qualifiers, related to what actions can be executed within the
function. Both visibility and function ability-related keywords are
discussed next. Functions can also return data and this information
is declared using the return keyword, followed by list of return
parameters. Solidity can return multiple parameters.

Functions has visibility qualifier associated with them similar to
state variables. The visibility of a function can be any one of the
following;:

e pnublic: This visibility makes function access directly from
outside. They become part of the contracts interface and can
be called both internally and externally.

e internal: By default, the state variable has interna1 qualifier if
nothing is specified. It means that this function can only be
used within the current contract and any contract that
inherits from it. These functions cannot be accessed from
outside. They are not part of the contracts interface.

e private: Private functions can only be used in contracts
declaring them. They cannot be used even within derived
contracts. They are not part of the contracts interface.

e oxternal: This visibility makes function access directly from
externally but not internally. These functions become part of
the contracts interface.

Functions can also have the following additional qualifiers that
change their behavior in terms of having the ability to change
contract state variables:

e constant: These functions do not have the ability to modify the
state of blockchain. They can read the state variables and
return back to the caller, but they cannot modify any
variable, invoke an event, create another contract, call other
functions that can change state, and so on. Think of constant
functions as functions that can read and return current state
variable values.

e view: These functions are aliases of constant functions.

e pure: Pure functions further constraints the ability of
functions. Pure functions can neither read and write—in
short, they cannot access state variables. Functions that are
declared with this qualifier should ensure that they will not
access the current state and transaction variables.

e payable: Functions declared with the payabie keyword has
ability to accept Ether from the caller. The call will fail in
case Ether is not provided by sender. A function can only
accept Ether if it is marked as payabie.

We will discuss the preceding qualifiers in detail in subsequent
chapters.

Functions can be invoked by their names.

Data types in Solidity

Solidity data types can broadly be classified in the following two
types:

e Value types

e Reference types

These two types in Solidity differ based on the way they are
assigned to a variable and stored in EVM. Assigning a variable to
another variable can be done by creating a new copy or just by
coping the reference. Value types maintains independent copies of
variables and changing the value in one variable does not effect
value in another variable. However, changing values in reference
type variables ensures that anybody referring to that variables gets
updates value.

Value types

A type is referred as value type if it holds the data (value) directly
within the memory owned by it. These types have values stored with
them, instead of elsewhere. The same is illustrated in following
diagram. In this example, a variable of data type unsigned
integer (uint) is declared with 13 as its data(value). The variable a
has memory space allocated by EVM which is referred as ox123
and this location has the value 13 stored. Accessing this variable
will provide us with the value 13 directly:

uinta=13;

0x123

-)

memory

Value types are types that do not take more than 32 bytes of
memory in size. Solidity provides the following value types:

e 1oo1: The boolean value that can hold true or false as its value

e uint: These are unsigned integers that can hold o and
positive values only

e int: These are signed integers that can hold both negative

and positive values

address: This represents an address of an account on
Ethereum environment

byte: This represents fixed sized byte array (byte1 t0 bytess2)

enun: Enumerations that can hold predefined constant values

Passing by value

When a value type variable is assigned to another variable or when
a value type variable is sent as an argument to a function, EVM
creates a new variable instance and copies the value of original
value type into target variable. This is known as passing by value.
Changing values in original or target variables will not affect the
value in another variable. Both the variables will maintain their
independent, isolated values and they can change without the other
knowing about it.

Reference types

Reference types, unlike value types, do not store their values
directly within the variabless themselves. Instead of the value, they
store the address of the location where the value is stored. The
variable holds the pointer to another memory location that holds
the actual data. Reference types are types that can take more than
32 bytes of memory in size. Reference types are shown next, by
means of an illustration.

In the following example, an array variable of data type uint is
declared with size 6. Arrays in Solidity are based at zero and so this
array can hold seven elements. The variable a has memory space
allocated by EVM which is referred as 0x123 and this location has a
pointer value 0x456 stored in it. This pointer refers to the actual
memory location where the array data is stored. When accessing the
variable, EVM dereferences the value of the pointer and shows the
value from the array index as shown in the following diagram:

int] a = new uint[6);

N A

0x123

012345

length][RDIBIY|s]l

006
J

0x456

w

memory

Solidity provides the following reference types:
e Arrays: These are fixed as well as dynamic arrays. Details
are given later in this chapter.
e Structs: These are custom, user-defined structures.

e String: This is sequence of characters. In Solidity, strings
are eventually stored as bytes. Details are give later in this
chapter.

e Mappings: This is similar to a hash table or dictionary in
other languages storing key-value pairs.

Passing by reference

When a reference type variable is assigned to another variable or
when a reference type variable is sent as an argument to a function,
EVM creates a new variable instance and copies the pointer from
the original variable into the target variable. This is known as
passing by reference. Both the variables are pointing to the same
address location. Changing values in the original or target variables
will change the value in other variables also. Both the variables will
share the same values and change committed by one is reflected in
the other variable.

Storage and memory data
locations

Each variable declared and used within a contract has a data
location. EVM provides the following four data structures for
storing variables:

e Storage: This is global memory available to all functions
within the contract. This storage is a permanent storage that
Ethereum stores on every node within its environment.

e Memory: This is local memory available to every function
within a contract. This is short lived and fleeting memory
that gets torn down when the function completes its
execution.

¢ (Calldata: This is where all incoming function execution data,
including function arguments, is stored. This is a non-
modifiable memory location.

e Stack: EVM maintains a stack for loading variables and
intermediate values for working with Ethereum instruction
set. This is working set memory for EVM. A stack is 1,024
levels deep in EVM and if it store anything more than this it
raises an exception.

The data location of a variable is dependent on the following two
factors:

e Location of variable declaration

e Data type of the variable

Based on the preceding two factors, there are rules that govern and
decide the data location of a variable. The rules are mentioned here.
Data locations also effect the way assignment operator works. Both
assignment and data locations are explained by means of rules that
govern them.

Rule 1

Variables declared as state variables are always stored in the storage
data location.

Rule 2

Variables declared as function parameters are always stored in the
memory data location.

Rule 3

Variables declared within functions, by default, are stored in
memory data location. However, there are following few caveats:

e The location for value type variables is memory within a
function while the default for a reference type variable is
storage.

Please note that storage is the default for reference type variable declared
within a function. However, it can be overridden.

¢ By overriding the default location, reference types variables
can be located at the memory data location. The reference
types referred are arrays, structs, and strings.

e Reference types declared within a function without being
overridden should always point to a state variable.

e Value type variables declared in a function cannot be
overridden and cannot be stored at the storage location.

e Mappings are always declared at storage location. This
means that they cannot be declared within a function. They
cannot be declared as memory types. However, mappings in
a function can refer to mappings declared as state variables.

Rule 4

Arguments supplied by callers to function parameters are always
stored in a calldata data location.

Rule 5

Assignments to state variable from another state variable always
creates a new copy. Two value type state variables statevar1 and
statevar2 are declared. Within the geturnt function, statevarz is assigned
to statevar1. At this stage, the values in both the variables are 4. The
next line of code changes the value of statevar2 to se and returns
statevar1. The returned value is 40 illustrating that each variable
maintains its own independent value a shown in the following
screenshot:

1
pragma solidity ©.4.19;
contract DemoStoragetoStorageValueTypeAssignment {

uint stateVarl

20;

uint statevVar2

40;

function getUInt() returns (uint)

: stateVarl = stateVar2;
stateVar2 = 50;
return stateVarl; // returns 40
¥

Two array type state variables, statearray1 and statearray2, are declared.

Within the geturnt function, statearray2 is assigned to statearraya. At this
stage, the values in both the variables are the same. The next line of
code changes one of the values in statearray2 to s and returns the
element at same location from the statearrays array. The returned
value is 4, illustrating that each variable maintains its own
independent value as shown in the following screenshot:

Rule 6

Assignments to storage variables from another memory variable
always create a new copy.

A fixed array of uint statearray is declared as a state variable. Within
the geturnt function a local memory located fixed array of uint
localarray 1S defined and initialized. The next line of code assigns
localArray tO statearray. At this stage, the values in both the variables
are the same. The next line of code changes one of the values in
localarray to 10 and returns the element at same location from the
statearray1 array. The returned value is 2, illustrating that each
variable maintains its own independent value as shown in the
following screenshot:

1
pragma solidity ©.4.19;
contract DemoMemorytoStorageReferenceTypeAssignment {

uint[2] stateArray ;
function getUInt() returns (uint)

{
uint[2] memory localArray = [uint(1), 2];
stateArray = localArray;

localArray[1] = 10;

return stateArray[1l]; // returns 2

A value type statevar state variables is declared and initialized with

value 20. Within the geturnt function, a 1ocaivar local variable is
declared with value se. In next line of code, the 1ocaivar local variable
is assigned to statevar. At this stage, the values in both the variables
are 40. The next line of code changes the value of 1ocaivar to so and
returns statevar. The returned value is so, illustrating that each
variable maintains its own independent value as shown in the
following screenshot:

Rule 7

Assignments to memory variable from another state variable always
creates a new copy. A value type state variable, statevar is declared
and initialized with value 20. Within the geturnt function a local
variable of type uint is declared and initiated with value 4. The
statevar variable is assigned to the 1ocaivar variable. At this stage, the
values in both the variables are 20. The next line of code changes the
value of statevar to se and returns iocaivar. The returned value is 2o,
illustrating that each variable maintains its own independent value
as shown in the following screenshot:

pragma solidity ©.4.19;
contract DemoStoragetoMemoryValueTypeAssignment {

uint statevar = 20;
function getUInt() returns (uint)

{
uint localvar = 40;

localvar = stateVar;

stateVar .

return localvar; // returns 20

A fixed array of uint statearray is declared as state variable. Within
the geturnt function, a local memory located, fixed array of uint

localarray iS defined and initialized with the statearray variable. At this
stage, the values in both the variables are the same. The next line of
code changes one of the values in statearray to s and returns the
element at the same location from the 1ocaiarray1 array. The returned
value is 2, illustrating that each variable maintains its own
independent value as shown in the following screenshot:

Rule 8

Assignments to a memory variable from another memory variable
do not create a copy for reference types; however, they do create a
new copy for value types. The code listing shown in the following
screenshot illustrates that value type variables in memory are
copied by value. The value of 1ocaivar1 is not affected by change in
value of the 1ocaivar2 variable:

[
pragma solidity ©.4.19;

contract DemoMemorytoMemoryValueTypeAssignment {

function getUInt() returns (uint)
{

uint localVarl

40,

uint localvar2 = 80;

localvarl

localvar2;

localvar2

100;

return localvarl; // returns 80

The code listing shown in the following screenshot illustrates that
reference type variables in memory are copied by reference. The
value of othervar is affected by change in the somevar variable:

Literals

Solidity provides usage of literal for assignments to variables.
Literals do not have names; they are the values themselves.
Variables can change their values during a program execution, but a
literal remains the same value throughout. Take a look at the
following examples of various literals:

¢ Examples of integer literal are 1, 10, 1,000, -1, and -100.

e Examples of string literals are "Ritesh" and 'Modi'. String
literals can be in single or double quotes.

e Examples of address literals are
oxca35b7d915458ef540ade6068dfe2f44e8fa733c and
OX11.

e Hexadecimal literals are prefixed with the nex keyword. An
example of hexadecimal literals is hex"1A2B3F".

e Solidity supports decimal literals with use of dot. Examples
include 4.5 and 0.2.

Integers

Integers help in storing numbers in contracts. Solidity provides the
following two types of integer:

¢ Signed integers: Signed integers can hold both negative
and positive values.

¢ Unsigned integers: Unsigned integers can hold only
positive values along with zero. They can also hold negative
values apart from positive and zero values.

There are multiple flavors of integers in Solidity for each of these
types. Solidity provides uint8 type to represent 8 bit unsigned
integer and thereon in multiples of 8 till it reaches 256. In short,
there could be 32 different declarations of uint with different
multiples of of 8, such as uint8, uint16, unit24, as far as uint256 bit.
Similarly, there are equivalent data types for integers such as int8,
int16 till int256.

Depending on requirements, an appropriately sized integer should
be chosen. For example, while storing values between 0 and

255 uint8 is appropriate, and while storing values between -128 to
127 int8 is more suitable. For higher values, larger integers can be

used.

The default value for both signed and unsigned integers is zero, to
which they are initialized automatically at the time of declaration.
Integers are value types; however, when used as an array they are
referred as reference types.

Mathematical operations such as addition, subtraction,
multiplication, division, exponential, negation, post-increment, and
pre-increment can be performed on integers. The following
screenshot shows some of these examples:

Boolean

Solidity, like any programming language, provides a boolean data
type. The noo1 data type can be used to represent scenarios that have
binary results, such as true Or faise, 1 Or o, and so on. The valid values
for this data type are true and raise. It is to be noted that bools in
Solidity cannot be converted to integers, as they can in other
programming languages. It's a value type and any assignment to
other boolean variables creates a new copy. The default value for
bool 1N SOlldlty 1S false.

A boo1 data type is declared and assigned a value as shown in the
following code:

bool isPaid = true;

It can be modified within contracts and can be used in both
incoming and outgoing parameters and the return value, as shown
in the following screenshot:

The byte data type

Byte refers to 8 bit signed integers. Everything in memory is stored
in bits consisting of binary values—o and 1. Solidity also provides
the byte data type to store information in binary format. Generally,
programming languages have a single data type for representing
bytes. However, Solidity has multiple flavors of the byte type. It
provides data types in the range from bytes1 to bytessz inclusive, to
represent varying byte lengths, as required. These are called fixed
sized byte arrays and are implemented as value types. The

bytes1 data type represents 1 byte and bytes2 represents 2 bytes. The
default value for byte is oxee and it gets initialized with this value.
Solidity also has a byte type that is an alias to bytesa.

A byte can be assigned byte values in hexadecimal format, as
follows:

bytesl aa = 0x65;

A byte can be assigned integer values in decimal format, as follows:

bytesl bb = 10;

A byte can be assigned negative integer values in decimal format, as
follows:

bytesl ee = -100;

A byte can be assigned character values as follows:

bytesl dd = 'a';

In the following code snippet, a value of 256 cannot fit in a single
byte and needs a bigger byte array:

bytes2 cc = 256;

The code listing in the following screenshot shows how to store
binary, positive, and negative integers, and character literals in
fixed sized byte arrays.

We can also perform bitwise operations such as and, or, xor, not, and
left and right shift operations on the vyte data type:

Arrays

Arrays are discussed as data types but, more specifically they are
data structures that are dependent on other data types. Arrays refer
to groups of values of the same type. Arrays help in storing these
values together and ease the process of iterating, sorting, and
searching for individuals or subsets of elements within this group.
Solidity provides rich array constructs that cater to different needs.

An example of an array in Solidity is as follows:
uint[5] intArray ;

Arrays in Solidity can be fixed or dynamic.

Fixed arrays

Fixed arrays refer to arrays that have a pre-determined size
mentioned at declaration. Examples of fixed arrays are as follows:

int[5] age ; // array of int with 5 fixed storage space allocated
byte[4] flags ; // array of byte with 4 fixed storage space allocated

Fixed arrays cannot be initialized using the new keyword. They can
only be initialized inline, as shown in the following code:

int[5] age = [int(10), 20,30,40,50] ;

They can also be initialized inline within a function later, as follows:

int[5] age ;
age = [int(10),2,3,4,5];

Dynamic arrays

Dynamic arrays refer to arrays that do not have a pre-determined
size at the time of declaration; however, their size is determined at
runtime. Take a look at the following code:

int[] age ; // array of int with no fixed storage space allocated. Storage is
allocated during assignment
byte[] flags ; // array of byte with no fixed storage space allocated

Dynamic arrays can be initialized inline or using the new operator.
The initialization can happen at the time of declaration as follows:

[int(10), 20,30,40,50] ;
new int[](5) ;

int[] age
int[] age

The initialization can also happen within a function later in the
following two different steps:

int[] age ;
age = new int[](5) ;

Special arrays

Solidity provides the following two special arrays:

¢ The bytes array

e The String array

The bytes array

The bytes array is a dynamic array that can hold any number of
bytes. It is not the same as obyte [1. The byte [] array takes 32 bytes for
each element whereas vytes tightly holds all the bytes together.

Bytes can be declared as a state variable with initial length size as
shown in the following code:

bytes localBytes = new bytes(0) ;

This can be also divided into the following two code lines similar to
previously discussed arrays:

bytes localBytes ;
localBytes= new bytes (10) ;

Bytes can be assigned values directly, as follows:

localBytes = "Ritesh Modi";

Also, values can be pushed into it, as shown in the following code, if
it is located at the storage location:

localBytes.push(byte(10));

Bytes also provide a read/write 1ength property, as follows:

return localBytes.length; //reading the length property

Take a look at the following code as well:

localBytes.length = 4; //setting bytes length to 4 bytes

The String array

Strings are dynamic data types that are based on bytes

arrays discussed in the previous section. They are very similar to
bytes with additional constraints. Strings cannot be indexed or
pushed and do not have the 1ength property. To perform any of these
actions on string variables, they should first be converted into bytes
and then converted back to strings after the operation.

Strings can be composed of characters within single or double
quotes.

Strings can be declared and assigned values directly, as follows:

String name = 'Ritesh Modi" ;

They can be also converted to bytes, as follows:

Bytes byteName = bytes(name) ;

Array properties

There are basic properties supported by arrays. In Solidity, due to
the multiple types of array, not every type supports all of these
properties.

These properties are as follows:

e index: This property used for reading individual array
elements is supported by all types of arrays, except for the
string type. The index property for writing to individual array
element is supported for dynamic arrays, fixed arrays, and
the bytes type only. Writing is not supported for string and
fixed sized byte arrays.

e push: This property is supported by dynamic arrays only.

e 1ength: This property is supported by all arrays from read
perspective, except for the string type. Only dynamic arrays
and bytes support modifying the 1ength property.

Structure of an array

We have already briefly touched on the topic of structures.
Structures help in defining custom user-defined data structures.
Structures help in group multiple variables of different data types
into a single type. A structure does not contain any programming
logic or code for execution; it just contains a variable declaration.
Structures are reference types and are treated as complex type in
Solidity.

Structures can be defined as state variables, as shown in the next
code illustration. A struct composed of string, uint, boo1, and uint
arrays is defined. There are two state variables. They are on the
storage location. While the first statestructure1 state variable is
initialized at the time of declaration, the other statestructure1 state
variable is left to be initialized later within a function.

A local structure at the memory location is declared and initialized
within the getAge function.

Another structure is declared that acts as a pointer to
the statestructure state variable.

A third local structure is declared that refers to the previously
created 1ocaistructure local structure.

A change in one of the properties of 1ocaistructure is performed while
the previously declared state structure is initialized and finally the
age from pointerLocalstructure iS returned. It returns the new value that
was assigned to 1ocaistructure, as shown in the following screenshot:

Enumerations

We have briefly touched on the concept of enumerations while
discussing the layout of the Solidity file earlier in this chapter.
Enums are value types comprising a pre-defined list of constant
values. They are passed by values and each copy maintains its own
value. Enums cannot be declared within functions and are declared
within the global namespace of the contract.

Predefined constants are assigned consecutively, increasing integer
values starting from zero.

The code illustration shown next declares an enun identified as a
status Consisting of five constant ValueS—created, approved, provisioned,
rejected, and deleted. They have integer values o, 1, 2, 3, 4 assigned to
them.

A instance of enun named mystatus 1S created with an initial value of

provisioned.

The returnenum function returns the status and it returns the integer
value. It is to be noted that webs and Decentralized Applications
(DApp) do not understand an enun declared within a contract. They
will get an integer value corresponding to the enun constant.

The returnenumint function returns an integer value.

The passsyvaiue function shows that the enum instance maintains its
own local copy and does not share with other instances.

The assigninteger function shows an example where an integer is
assigned as a value to an enun instance:

Address

An address is a 20 bytes data type. It is specifically designed to hold
account addresses in Ethereum, which are 160 bits or 20 bytes in
size. It can hold contract account addresses as well as externally
owned account addresses. Address is a value type and it creates a
new copy while being assigned to another variable.

Address has a vaiance property that returns the amount of Ether
available with the account and has a few functions for transferring
Ether to accounts and invoking contract functions.

It provides the following two functions to transfer Ether:

® transfer

® send

The transter function is a better alternative for transferring Ether to
an account than the send function. The send function returns a
boolean value depending on successful execution of the Ether
transfer while the transfer function raises an exception and returns
the Ether to the caller.

It also provides the following three functions for invoking the
contract function:

® call
® pelegateCall

® cCallcode

Mappings

Mappings are one of the most used complex data types in Solidity.
Mappings are similar to hash tables or dictionaries in other
languages. They help in storing key-value pairs and enable
retrieving values based on the supplied key.

Mappings are declared using the mapping keyword followed by data
types for both key and value separated by the => notation. Mappings
have identifiers like any other data type and they can be used to
access the mapping.

An example of mapping is as follows:
Mapping (uint => address) Names ;

In the preceding code, the uint data type is used for storing the keys
and the address data type is used for storing the values. names is used as
an identifier for the mapping.

Although it is similar to a hash table and dictionary, Solidity does
not allow iterating through mapping. A value from mapping can be
retrieved if the key is known. The next example illustrates working
with mapping. A counter of type uint is maintained in a contract that
acts as a key and address details are stored and retrieved with the
help of functions.

To access any particular value in mapping, the associated key
should be used along with the mapping name as shown here:

Names[counter]

To store a value in mapping, use the following syntax:
Names[counter] = <<some value>>

Take a look at the following screenshot:

pragma solidity ©.4.19;

contract GeneralMapping {
mapping (uint => address) Names;
uint counter;

function addtoMapping(address addressDetails) returns (uint)

{

counter = counter + 1;
Names[counter] = addressDetails;

return counter; //returns false

}

function getMappingMember(uint id) returns (address)

{

return Names[id];

}

Although mapping doesn't support iteration, there are ways to work
round this limitation. The next example illustrates one of the ways
to iterate through mapping. Please note that iterating and looping
are an expensive operation in Ethereum in terms of gas usage and
should generally be avoided. In this example, a separate counter is
maintained to keep track of the number of entries stored within the
mapping. This counter also acts as the key within the mapping. A
local array can be constructed for storing the values from mapping.
A loop can be executed using counter and can extract and store each

value from the mapping into the local array as shown in the
following screenshot:

Mapping can only be declared as a state variable whose memory
location is of type storage. Mapping cannot be declared within
functions as memory mappings. However, mappings can be
declared in functions if they refer to mappings declared in state
variables, as shown in the following example:

Mapping (uint => address) localNames = Names ;

This is valid syntax as the 1ocainames mapping is referring to the names
state variable:

pragma solidity 0.4.19;

contract MappinginMemory {
mapping (uint => address) Names;
uint counter;

function addtoMapping(address addressDetails) returns (uint)

{

counter = counter + 1;
mapping (uint => address) localNames = Names;

localNames[counter] = addressDetails;

return counter;

}

function getMappingMember(uint id) returns (address)

{

return Names[id];

}

It is also possible to have nested mapping, that is mapping
consisting of mappings. The next example illustrates this. In this
example, there is an apparent mapping that maps uint to another
mapping. The child mapping is stored as a value for the first
mapping. The child mapping has the addaress type as the key and

the string type as value. There is a single mapping identifier and the
child or inner mapping can be accessed using this identifier itself as
shown in the following code:

mapping (uint => mapping(address => string)) accountDetails;

To add an entry to this type of nested mapping, the following syntax
can be used:

accountDetails[counter][addressDetails] = names;

Here, accountpetails is the mapping identifier and counter is the key for
parent mapping. The accountpetails[counter] mapping identifier
retrieves the value from the parent mapping, which in turn happens
to be another mapping. Adding the key to the returned value, we
can set the value for the inner mapping. Similarly, the value from
the inner mapping can be retrieved using the following syntax:

accountDetails[counter][addressDetails]

Take a look at the following screenshot:

Summary

This is the first chapter that has explored Solidity in depth. This
chapter introduced Solidity, the layout of Solidity files including
elements that can be declared at the top level in it. Constructs li
pragma, contracts, and elements of contracts were discussed for a
layout perspective. A complete immersion into the world of Solidity
data types forms the core of this chapter. Value types and reference
types were discussed in depth along with types like int, uint, fixed
sized byte arrays, bytes, arrays, strings, structures, enumerations,
addresses, boolean, and mappings were discussed in great length
along with examples. Solidity provides additional data locations
from complex types such as structs and arrays, which were also
discussed in depth along with rules that govern their usage.

In the next chapter, we will focus on using some out-of-box
variables and functions of smart contracts. Solidity provides
numerous global variables and functions to help ease the task of
obtaining the current transaction and block context. These variables
and function provides contextual information and Solidity code and
utilizes them for logic execution. They play a very important role in
authoring enterprise-scale smart contracts.

Global Variables and Functions

In chapter 3, Introducing Solidity, you learned about Solidity data
types in detail. Data types can be value or reference types. Some
reference types such as structs and arrays also have data locations—
memory and storage associated with them. Variables could be state
variables or variables defined locally within functions. This chapter
will focus on variables, their scoping rules, declaration and
initialization, conversion rules hoisting, and variables available
globally to all contracts. Some global functions will also be
discussed in this chapter.

We will cover the following topics in this chapter:

e The var data type

e Variable scoping

e Variable conversion

e Variable hoisting

e Block related global variables

e Transaction related global variables

e Mathematical and cryptographic global functions
¢ Addressing related global variables and functions

e Contract-related global variables and functions

The var type variables

One Solidity type that was not discussed in the last chapter is the var
data type. var is a special type that can only be declared within a
function. There cannot be a state variable in a contract of type var.
Variables declared with the var type are known as implicitly typed
variable because var does not represent any type explicitly. It
informs the compiler that its type is dependent and determined by
the value assigned to it the first time. Once a type is determined, it
cannot be changed.

The compiler decides the final data type for the var variables instead of a
developer mentioning the type. It is therefore quite possible that the type
determined by the biock.difficuity (uint) current block compiler might not
exactly be the type expected by code execution. var cannot be used with the
explicit usage of memory location. An explicit memory location needs an
explicit variable type.

An example of var is shown in the following screenshot. Variable
uintvars 1S Of type uints, variable uintvarie is of type uint1s, variable
intvars 18 Of type ints (signed integer), variable intvarie is of type int1e
(signed integer), variable boo1var is of type bool, variable stringvar is of
type string, variable bytesvar is of type bytes, variable arrayinteger is of
type uints array, and variable arraysyte is of type bytesio array:

Variables hoisting

Hoisting a concept is where variables need not be declared and
initialized before using the variable. The variable declaration can
happen at any place within a function, even after using it. This is
known as variable hoisting. The Solidity compiler extracts all
variables declared anywhere within a function and places them at
the top or beginning of a function and we all know that declaring a
variable in Solidity also initializes them with their respective default
values. This ensures that the variables are available throughout the
function.

In the following example, firstvar, secondvar, and resuit are declared
towards the end of the function but utilized at the beginning of the
function. However, when the compiler generates the bytecode for
the contract, it declares all variables as the first set of instructions in
a function as shown in the following screenshot:

Variable scoping

Scoping refers to the availability of a variable within a function and
a contract in Solidity. Solidity provides the following two locations
where variables can be declared:

¢ Contract-level global variables—also known as state
variables

¢ Function-level local variables

It is quite easy to understand function-level local variables. They are
only available anywhere within a function and not outside.

Contract-level global variables are variables that are available to all
functions including constructor, fallback, and modifiers within a
contract. Contract-level global variables can have a visibility
modifier attached to them. It is important to understand that state
data can be viewed across the entire network irrespective of the
visibility modifier. The following state variables can only be
modified using functions:

e nublic: These state variables are accessible directly from
external calls. A getter function is implicitly generated by the
compiler to read the value of public state variables.

e internal: These state variables are not accessible directly from
external calls. They are accessible from functions within a
current contract and child contracts deriving from it.

e private: These state variables are not accessible directly from

external calls. They are also not accessible from functions
from child contracts. They are only accessible from
functions within the current contract.

Let's take a look at the preceding state variables in the following
screenshot:

Type conversion

By now, we know that Solidity is a statically typed language, where
variables are defined with specific data types at compile time. The
data type cannot be changed for the lifetime of the variable. It
means it can only store values that are legal for a data type. For
example, uint8 can store values from 0 to 255. It cannot store
negative values or values greater than 255. Take a look at the
following code to better understand this:

pragma solidity "0.4.19;
contract ErrorDataType {
function hoistingDemo() returns (uint){

uint8 someVar = 100;
someVar = 300; //error

However, there are times when these conversions are required to
copy a value into a variable of one type to another, and these are
called type conversions. Solidity provides rules for type
conversions.

In Solidity, we can perform various kinds of conversion and we will
cover these in the following sections.

Implicit conversion

Implicit conversion means that there is no need for an operator,
or no external help is required for conversion. These types of
conversion are perfectly legal and there is no loss of data or
mismatch of values. They are completely type-safe. Solidity allows
for implicit conversion from smaller to larger integral types. For
example, converting uint8 to uint16 happens implicitly.

Explicit conversion

Explicit conversion is required when a compiler does not perform
implicit conversion either because of loss of data or a value
containing data not falling within a target data type range. Solidity
provides a function for each value type for explicit conversion.
Examples of explicit conversion are uint16 conversion to uints. Data
loss is possible in such cases.

The following code listing shows examples for both implicit and
explicit conversions:

® convertionExplicitUINTstouInT2s6: This function executed explicit
conversion from uints to uint2se. It is to be noted that this
conversion was also possible implicitly.

® convertionExplicitUInT256touInTs: This function executed explicit
conversion from uint2se to uints. This conversion will raise a
compile time error if the conversion happened implicitly.

® ConvertionExplicitUINT256toUINT81. This function shows an
interesting aspect of explicit conversion. Explicit
conversions are error-prone and should generally be
avoided. In this function, an attempt is made to store a large
value in a variable of a smaller data type. This results in loss
of data and unpredictability. The compiler does not generate
an error; however, it tries to fit the value into smaller value
and goes in cycle to find a valid value.

® conversions: This function shows an example of implicit and

explicit conversions. Some fail and some are legal. In the
following screenshot, please read the comments beneath the
code to understand them:

Block and transaction global
variables

Solidity provides access to a few global variables that are not
declared within contracts but are accessible from code within
contracts. Contracts cannot access the ledger directly. A ledger is
maintained by miners only; however Solidity provides some
information about the current transaction and block to contracts so
that they can utilize them. Solidity provides both block-as well as
transaction-related variables.

The following code illustratesexamples of using global transaction,
block, and message variables:

Transaction and message
global variables

The following is a list of global variables along with their data types
and a description provided as a ready reference:

Variable name Description

Same as etherbase. Refers to the miner's

block.coinbase (address)

address.
block.difficulty (uint) Difficulty level of current block.
block.gaslimit (uint) Gas limit for current block.
block.number (uint) Block number in sequence.
block.timestamp (uint) Time when block was created.

Information about the function and its
msg.data (bytes)

msg.gas (uint)

msg.sender (address)

msg.sig (bytes4)

msg.value (uint)

now (uint)

tx.gasprice (uint)

tx.origin (address)

block.blockhash(uint
blockNumber) returns
(bytes32)

parameters that created the transaction.

Gas unused after execution of
transaction.

Address of caller who invoked the
function.

Function identifier using first four bytes
after hashing function signature.

Amount of wei sent along with
transaction.

Current time.

The gas price caller is ready to pay for
each gas unit.

The first caller of the transaction.

Hash of the block containing the
transaction.

Difference between tx.origin
and msg.sender

Careful readers might have noticed in the previous code illustration
that both tx.origin and msg.sender show the same result and output.
The tx.origin global variable refers to the original external account
that started the transaction while msg.sender refers to the immediate
account (it could be external or another contract account) that
invokes the function. The tx.origin variable will always refer to the
external account while nsg.sender can be a contract or external
account. If there are multiple function invocations on multiple
contracts, tx.origin Will always refer to the account that started the
transaction irrespective of the stack of contracts invoked. However,
msg.sender Will refer to the immediate previous account
(contract/external) that invokes the next contract. It is
recommended to use msg.sender OVET tx.origin.

Cryptography global variables

Solidity provides cryptographic functions for hashing values within
contract functions. There are two hashing functions—SHA2 and
SHAS3.

The shas function converts the input into a hash based on the shas
algorithm while shazs6 converts the input into a hash based on the
shaz algorithm. There is another function, keccak2ss, which is an alias

of the SHA3 algorithm. It is recommended to use the keccak2ss OT shas
functions for hashing needs.

The following screenshot of the code segment illustrates this:

pragma solidity "0.4.19;
contract CryptoFunctions {
function cryptoDemo() returns (bytes32, bytes32, bytes32){

return (sha256("r"), keccak256("r"), sha3("r"));

}

The result of executing this function is shown in the following
screenshot. The result of both the keccakzss and shas functions is the
same:

All three of these functions work on tightly packed arguments,
meaning that multiple parameters can be concatenated together to
find a hash, as shown in the following code snippet:

keccak256(97, 98, 99)

Address global variables

Every address—externally owned or contract-based, has five global
functions and a single global variable. These functions and variables
will be explored in depth in subsequent chapters on Solidify
functions. The global variable related to the address is called
balance and it provides the current balance of Ether in wei
available at the address.

The functions are as follows:
® <address>.transfer(uint256 amount): This function sends the given
amount of wei to address, throws on failure

® <address>.send(uint256 amount) returns (bool): This function sends

the given amount of wei to address, and returns raise on failure

® <address>.call(...) returns (bool): This function issues a low-level

call, and returns faise on failure

® <address>.callcode(...) returns (bool): This function issues a low-
level caiicode, and returns faise on failure

® <address>.delegatecall(...) returns (bool): This function issues a

low-level delegateca11, and returns faise on failure

Contract global variables

Every contract has the following three global functions:

e this: The current contract's type, explicitly convertible to
address

® seifdestruct: This is an address recipient that destroys the
current contract, sending its funds to the given address

® suicide: This is an address recipient too alias to seifdestruct

Summary

This chapter, in many ways, was a continuation of previous
chapters. Variables were discussed in depth in the first half of this
chapter. Variable hoisting, type conversions, details about the var
data type, and the scope of Solidity variables were elaborated on,
along with code examples. The latter half of the chapter focused on
globally available variables and functions. Transaction and message
related variables, such as biock.coinbase, msg.data and many more, were
explained. The difference between msg.sender and tx.origin along with
their usage was also explained in this chapter. This chapter also
discussed cryptographic, address, and contract-level functions.
However, we will focus on these functions in another chapter later
in this book.

The following chapter will focus on Solidity expressions and control
structures, covering programming details about loops and
conditions. This will be an important chapter because every
program needs some kind of looping to perform repetitive tasks and
Solidity control structures help implement these. Loops are based
on conditions and conditions are written using expressions. These
expressions are evaluated and return either true or faise. Stay tuned
while we plunge into control structures and expressions in the
following chapter.

Expressions and Control
Structures

Taking decisions in code is an important aspect of a programming
language, and Solidity should also be able to execute different
instructions based on circumstances. Solidity provides the if...eise
and switch statements for this purpose. It is also important to loop
through multiple items and Solidity provides multiple constructs
such as ror loops and whi1e statements for this purpose. In this
chapter, we will discuss in detail the programming constructs that
help you take decisions and loop through a set of values.

This chapter covers the following topics:

Expressions

The if...e1se Statement

The while statement

The for loop

The break and continue kGYWOI'dS

The return Statement

Solidity expressions

An expression refers to a statement (comprising multiple operands
and optionally zero or more operators) that results in a single value,
object, or function. The operand can be a literal, variable, function
invocation, or another expression itself.

An example of an expression is as follows:
Age > 10

In the preceding code, age is a variable and 10 is an integer literal. age
and 10 are operands and the (>) greater than symbol is the operator.
This expression returns a single boolean value (true Or faise)
depending on the value stored in age.

Expressions can be more complex comprising multiple operands
and operators, as follows:

((Age > 10) && (Age < 20)) || ((Age > 40) && (Age < 50))

In the preceding code, there are multiple operators in play.

The &5 operator acts as an AND operator between two expressions,
which in turn comprises operands and operators. There is also an

OR operator represented by the || operator between two complex

expressions.

Solidity has the following comparison operators that help in writing
expressions returning Boolean values:

Operator Meaning

= Equals

E Not equals

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Sample example

myVar == 10

myvVar != 10

myvVar > 10

myVar < 10

myVar >= 10

myVar <= 10

Solidity also provides the following logical operators that help in
writing expressions returning Boolean values:

Operator Meaning Sample example

&& AND (myvar > 10) && (myVar < 10)

[OR myvar != 10

! NOT myVar > 10

The following operators have precedence in Solidity just like other
languages:

Precedence Description Operator

Postfix increment and

) ++,
decrement

NeW . new <typename> NA

expression

Array) . <array>[<indeX>] NA

subscripting

Member <object>.<member> NA

access

Function-like <func>(<args...>) NA
call

Parentheses (<statement>) NA

Prefix increment and

2 decrement -
Unary.plus . NA
and minus

Unary . delete NA
operations

Logical NOT ! NA
Bitwise NOT ~ NA
3 Exponentiation ’

Multiplication, division,

*o /e %
and modulo >

10

11

12

13

Addition and
subtraction

Bitwise shift operators

Bitwise AND

Bitwise XOR

Bitwise OR

Inequality operators

Equality operators

Logical AND

Logical OR

<<, >>

<’ >, <=, >=

&&

14

15

16

Ternary operator

Assignment operators

Comma operator

<conditional> ? <if-true>
: <if-false>

— = A= o= _ .
=y =, A=, &5, <<=, >>=, 4=,

— k— — o=
==y F=, /=, %=

The If decision control

Solidity provides conditional code execution with the help of
the if...e1se instructions. The general structure of if...eise is as
follows:

if (this condition/expression is true) {
Execute the instructions here

}

else if (this condition/expression is true) {
Execute the instructions here

}

else {
Execute the instructions here

}

if and if-else are keywords in Solidity and they inform the compiler
that they contain a decision control condition, for example, if (a >
10). Here, ir contains a condition that can evaluate to either true or
false. If a > 10 evaluates to true then the code instructions that follow
in the pair of double-brackets (¢) and (3) should be executed.

e1se is also a keyword that provides an alternate path if none of the
previous conditions are true. It also contains a decision control
instruction and executes the code instructions if a > 1e tends to be

true.

The following example shows the usage of 'TF'-'ELSE IF' - 'ELSE'
conditions. An enum with multiple constants is declared. A
stateManagement function accepts an uvints argument, which is converted
into an enun constant and compared within the if...e1se decision
control structure. If the value is 1 then the returned result is 1; if the
argument contains 2 or s as value, then the eise...ir portion of code
gets executed; and if the value is other than 1,2, or s then the else

part is executed:

The while loop

There are times when we need to execute a code segment
repeatedly based on a condition. Solidity provides whiie loops
precisely for this purpose. The general form of the whiie loop is as
follows:

Declare and initialize a counter

while (check the value of counter using an expression or condition) {
Execute the instructions here
Increment the value of counter

while 1S a keyword in Solidity and it informs the compiler that it
contains a decision control instruction. If this expression evaluates
to true then the code instructions that follow in the pair of double-
brackets ¢ and 3 should be executed. The whiie loop keeps executing
until the condition turns false.

In the following example, mapping is declared along with counter. counter
helps loop the mapping since there is no out-of-the-box support in
SOhdlty to 100p mapping.

An event is used to get details about transaction information. We
will discuss events in detail in the Events and Logging section in cha
pter 8, Exceptions, Events, and Logging. For now, it is enough to
understand that you are logging information whenever an event is
invoked. The setnumber function adds data to mapping and

the getnumbers function runs a white loop to retrieve all entries within
the mapping and log them using events.

A temporary variable is used as a counter that is incremented by 1 at every
execution of the wniie loop.

The wniie condition checks the value of the temporary variable and
compares it with the global counter variable. Based on whether it's
true or false, the code within the whiie loop is executed. Within this
set of instructions, the value of a counter should be modified so that
it can help to exit the loop by making the whiie condition false as
shown in the following screenshot:

pragma solidity 70.4.19;
contract whileLoop {

mapping (uint => uint) blockNumber;
uint counter;

event uintNumber(uint);
bytes aa;

function SetNumber() {
blockNumber[counter++] = block.number;

}

function getNumbers() {
uint 1 = 9;
while (i < counter) {
uintNumber(blockNumber[i]);
i=1+1;

The for loop

One of the most famous and most used loops is the for loop, and we
can use it in Solidity. The general structure of a for loop is as
follows:

for (initialize loop counter; check and test the counter; increase the value
of counter;) {
Execute multiple instructions here

}

for is @ keyword in Solidity and it informs the compiler that it
contains information about looping a set of instructions. It is very
similar to the whiie loop; however it is more succinct and readable
since all information can be viewed in a single line.

The following code example shows the same solution: looping
through a mapping. However, it uses the ror loop instead of the whiie
loop. The i variable is initialized, incremented by 1 in every iterator,
and checked to see whether it is less than the value of counter. The
loop will stop as soon as the condition becomes false; that is, the
value of i is equal to or greater than counter:

The do...while loop

The do. . .wnite loop is very similar to the wniie loop. The general form
of a do. . .whize loop is as follows:

Declare and Initialize a counter

do {

Execute the instructions here

Increment the value of counter

} while(check the value of counter using an expression or condition)

There is a subtle difference between the white and do. . .whize loops. If
you notice, the condition in do. . .whi1e is placed towards the end of
the loop instructions. The instructions in the whiie loop is not
executed at all if the condition is false; however, the instruction in
the do...wnize loop get executed once, before the condition is
evaluated. So, if you want to execute the instructions at least once,
the do...wnize loop should be preferred compared to the whiie loop.
Take a look at the following screenshot of a code snippet:

The break statement

Loops help iterateing over from the start till it arives on a vector
data type. However, there are times when you would like to stop the
iteration in between and jump out or exit from the loop without
executing the conditional test again. The break statement helps us do
that. It helps us terminate the loop by passing the control to the first
instruction after the loop.

In the following screenshot example, the ror loop is terminated and
control moves out of the ror loop when the value of i is 1 because of
the use of the break statement. It literally breaks the loop as shown in
the following screenshot:

The continue statement

Loops are based on expressions. The logic of the expression decides
the continuity of the loop. However, there are times when you are in
between loop execution and would like to go back to the first line of
code without executing the rest of the code for the next iteration.
The continue Statement helps us do that.

In the following screenshot, the ror loop is executed till the end;
however the values after s are not logged at all:

The return statement

Returning data is an integral part of a Solidity function. Solidity
provides two different syntaxes for returning data from a function.
In the following code sample, two functions—getsiocknumber and
getBlockNumberi1—are defined. The getBlockNumber function returns a uint
without naming the return variable. In such cases, developers can
resort to using the return keyword explicitly to return from the
function.

The getsiocknumber1 function returns uvint and also provides a name for
the variable. In such cases, developers can directly use and return
this variable from a function without using the return keyword as
shown in the following screenshot:

Summary

Expressions and control structures are an integral part of any
programming language and they are an important element of the
Solidity language as well. Solidity provides a rich infrastructure for
decision and looping constructs. It provides if...e1se decision
control structures and the rfor, do...while, and while loops for looping
over data variables that can be iterated. Solidity also allows us to
write conditions and logical, assignment, and other types of
statement any that programming language supports.

The following chapter will discuss Solidity and contract functions in
detail; these are core elements for writing contracts. Blockchain is
about executing and storing transactions and transactions are
created when contract functions are executed. Functions can
change the state of Ethereum or just return the current state.
Functions that change state and those that return—current state
will be discussed in detail in the following chapter.

Writing Smart Contracts

Solidity is used to author smart contracts. This chapter is dedicated
to smart contracts. It is from here that you will start writing smart
contracts. This chapter will discuss the design aspects of writing
smart contracts, defining and implementing a contract, and
deploying and creating contracts using different mechanisms—
using new keywords and known addresses. Solidity provides rich
object orientation and this chapter will delve deep into object-
oriented concepts and implementations, such as inheritance,
multiple inheritance, declaring abstract classes and interfaces, and
providing method implementations to abstract functions and
interfaces.

This chapter covers the following topics:

e Creating contracts

Creating contracts via new

Inheritance

Abstract contracts

Interfaces

Smart contracts

What are smart contracts? Everybody bears an expression trying to
understand the meaning of contracts and the significance of the
word "smart" in reference to contracts. Smart contracts are,
essentially, code segments or programs that are deployed and
executed in EVM. A contract is a term generally used in the legal
world and has little relevance in the programming world. Writing a
smart contract in Solidity does not mean writing a legal contract.
Moreover, contracts are like any other programming code,
containing Solidity code, and are executed when someone invokes
them. There is inherently nothing smart about it. A smart contract
is a blockchain term,; it is a piece of jargon used to refer to
programming logic and code that executes within EVM.

A smart contract is very similar to a C++, Java, or C# class. Just as a
class is composed of state (variables) and behaviors (methods),
contracts contain state variables and functions. The purpose of state
variables is to maintain the current state of the contract, and
functions are responsible for executing logic and performing update
and read operations on the current state.

We have already seen some examples of smart contracts in the
previous chapter; however, it's time to dive deeper into the subject.

Writing a simple contract

A contract is declared using the contract keyword along with an
identifier, as shown in the following code snippet:

contract SampleContract {

}

Within the brackets comes the declaration of state variables and
function definitions. A complete definition of contract was
discussed in chapter 3, Introducing Solidity, and I am providing it
again for quick reference. This contract has state variables, struct
definitions, enum declarations, function definitions, modifiers, and
events. State variables, structs, and enums were discussed in detail
in chapter 4, Global Variables and Functions. Functions, modifiers,
and events will be discussed in detail over the next two chapters.
Take a look at the following screenshot of a code snippet depicting
contract:

http://global

Creating contracts

There are the following two ways of creating and using a contract in
Solidity:

e Using the new keyword

e Using the address of the already deployed contract

Using the new keyword

The new keyword in Solidity deploys and creates a new contract
instance. It initializes the contract instance by deploying the
contract, initializing the state variables, running its constructor,
setting the nonce value to one, and, eventually, returns the address of
the instance to the caller. Deploying a contract involves checking
whether the requestor has provided enough gas to complete
deployment, generating a new account/address for contract
deployment using the requestor's address and nonce value, and passing
on any Ether sent along with it.

In the next screenshot, two contracts, ve11oworid and ciient, are
defined. In this scenario, one contract (ciient) deploys and creates a

new instance of another contract (ke11owor1d). It does so using the new
keyword as shown in the following code snippet:

HellowWorld myObj = new HelloWorld();

Let's take a look at the following screenshot:

Using address of a contract

This method of creating a contract instance is used when a contract
is already deployed and instantiated. This method of creating a
contract uses the address of an existing, deployed contract. No new
instance is created; rather, an existing instance is reused. A
reference to the existing contract is made using its address.

In the next code illustration, two contracts, veilowor1d and ciient, are
defined. In this scenario, one contract(ciient) uses an already known
address of another contract to create a reference to it (He11owor1a). It
does so using the address data type and casting the actual address to
the ne110wor1d contract type. The myobj object contains the address of
an existing contract, as shown in the following code snippet:

HellowWorld myObj = HelloWorld(obj);

Let's take a look at the following screenshot:

Constructors

Solidity supports declaring a constructor within a contract.
Constructors are optional in Solidity and the compiler induces a
default constructor when no constructor is explicitly defined. The
constructor is executed once while deploying the contract. This is
quite different from other programming languages. In other
programming languages, a constructor is executed whenever a new
object instance is created. However, in Solidity, a constructor is
executed are deployed on EVM. Constructors should be used for
initializing state variables and, generally, writing extensive Solidity
code should be avoided. The constructor code is the first set of code
that is executed for a contract. There can be at most one constructor
in a contract, unlike constructors in other programming languages.
Constructors can take parameters and arguments should be
supplied while deploying the contract.

A constructor has the same name as that of the contract. Both the
names should be the same. A constructor can be either pub1ic or
internal, from a visibility point of view. It cannot be externa1 OT private.
A constructor does not return any data explicitly. In the following
example, a constructor with the same name as that of

the ne110wor1d contract is defined. It sets the storage variable value to
s, as shown in the following screenshot:

Contract composition

Solidity supports contract composition. Composition refers to
combining multiple contracts or data types together to create
complex data structures and contracts. We have already seen
numerous examples of contract composition before. Refer to the
code snippet for creating contracts using the new keyword shown
earlier in this chapter. In this example, the ciient contract is
composed of the neiiowor1d contract. Here, neiiowor1d is an independent
contract and ciient is a dependent contract. ciient is a dependent
contract because it is dependent on the ei1owor1d contract for its
completeness. It is a good practice to break down problems into
multi-contract solutions and compose them together using contract
composition.

Inheritance

Inheritance is one of the pillars of object orientation and Solidity
supports inheritance between smart contracts. Inheritance is the
process of defining multiple contracts that are related to each other
through parent-child relationships. The contract that is inherited is
called the parent contract and the contract that inherits is called
the child contract. Similarly, the contract has a parent known as
the derived class and the parent contract is known as a base
contract. Inheritance is mostly about code-reusability. There is a
is-a relationship between base and derived contracts and all public
and internal scoped functions and state variables are available to
derived contracts. In fact, Solidity compiler copies the base contract
bytecode into derived contract bytecode. The is keyword is used to
inherit the base contract in the derived contract.

It is one of the most important concepts that should be mastered by
every Solidity developer because of the way contracts are versioned
and deployed.

Solidity supports multiple types of inheritance, including multiple
inheritance.

Solidity copies the base contracts into the derived contract and a
single contract is created with inheritance. A single address is
generated that is shared between contracts in a parent-child
relationship.

Single inheritance

Single inheritance helps in inheriting the variables, functions,
modifiers, and events of base contracts into the derived class. Take
a look at the following diagram:

contract A {

Contract B [T

The next code snippets help to explain single inheritance. You will
observe that there are two contracts, parentcontract and childcontract.
The chitdcontract contract inherits from parentcontract. childcontract will
inherit all public and internal variables and functions. Anybody
using childcontract, as seen in the ciient contract, can invoke both
GetInteger and SetInteger functions as if they were defined in
childcontract, @S Shown in the following screenshot:

All functions in Solidity contracts are virtual and are based on
contract instance. An appropriate function—either in the base or
derived class is invoked. This topic is known as polymorphism
and is covered in a later section in this chapter.

The order of invocation of the contract constructor is from the base
most contract to the derive most contract.

Multi-level inheritance

Multi-level inheritance is very similar to single inheritance;
however, instead of just a single parent-child relationship, there are
multiple levels of parent-child relationship.

This is shown in the following diagram. Contract A is the parent of
Contract B and Contract B is the parent of Contract C:

contract A {

Contract B 1 T

Contract C 1 T

Hierarchical inheritance

Hierarchical inheritance is again similar to simple inheritance.
Here, however, a single contract acts as a base contract for multiple
derived contracts. This is shown in the following diagram. Here,
Contract A is derived in both Contract B and Contract C:

contract A {
Contract A | R

contract Bis A {

Contract B Contract C }

contract Cis A {

Multiple inheritance

Solidity supports multiple inheritance. There can be multiple levels
of single inheritance. However, there can also be multiple contracts
that derive from the same base contract. These derived contracts
can be used as base contracts together in further child classes.
When contracts inherit from such child contracts together, there is
multiple inheritance, as shown in the following diagram:

contract A {
Contract A T DR IR T

contract Bis A {

Contract B Contract C

contract Cis A {

contract D is A,B,C {
Contract D

The next screenshot shows an example of multiple inheritance. In
this example, suncontract acts as a base contract that is derived into
the muiticontract and pividecontract contracts. The sumcontract contract
provides an implementation for the sun function and the muiticontract
and pividecontract contracts provide an implementation of the muitip1y
and pivide functions, respectively. Both muiticontract and pividecontract
are inherited in subcontract. The subcontract contract provides an

implementation of the su function. The ciient contract is not a part
of the parent-child hierarchy and is consuming other contracts. The
client contract creates an instance of subcontract and calls the sum
method on it.

Solidity follows the path of Python and uses C3 Linearization,
also known as Method Resolution Order (MRO), to force a
specific order in graphs of base contracts. The contracts should
follow a specific order while inheriting, starting from the base
contract through to the most derived contract. An example of such
sequencing is shown next, in which the subcontract contract is derived
from sumContract, DivideContract, and multicontract.

The following screenshot of the code example shows that muiticontract
is an immediate parent contract for the subcontract contract, followed
by Dividecontract and sumcontract:

It is also possible to invoke a function specific to a contract by using
the contract name along with the function name.

Encapsulation

Encapsulation is one of the most important pillars of OOP.
Encapsulation refers to the process of hiding or allowing access to
state variables directly for changing their state. It refers to the
pattern of declaring variables that cannot be accessed directly by
clients and can only be modified using functions. This helps in
constraint access to variables but, at the same time, allows enough
access to class for taking action on it. Solidity provides multiple
VlSlblllty modifiers such as external, public, internal, and private that
affects the visibility of state variables within the contract in which
they are defined, inheriting child contracts or outside contracts.

Polymorphism

Polymorphism means having multiple forms. There are the
following two types of polymorphism:

¢ Function polymorphism

e Contract polymorphism

Function polymorphism

Function polymorphism refers to declaring multiple functions
within the same contract or inheriting contracts having the same
name. The functions differ in the parameter data types or in the
number of parameters. Return types are not taken into
consideration for determining valid function signatures for
polymorphism. This is also known as method overloading.

The next code segment illustrates a contract that contains two
functions, which have the same name but different data types for
incoming parameters. The first function, getvariabiepata, accepts ints
as its parameter data type, while the next function having the same
name accepts int1e as its parameter data type. It is absolutely legal to
have the same function name with a different number of
parameters of different data types for incoming parameters as
shown in the following screenshot:

Contract polymorphism

Contract polymorphism refers to using multiple contract instances
interchangeably when the contracts are related to each other by way
of inheritance. Contract polymorphism helps in invoking derived
contract functions using a base contract instance.

Let's understand this concept with the help of code listing shown
next.

A parent contract contains two functions, setinteger and cetinteger. A
child contract inherits from a parent contract and provides its own
implementation of cetinteger. The child contract can be created using
the childcontract variable data type and it can also be created using
the parent contract data type. Polymorphism allows the use of any
contract in a parent-child relationship with the base type contract
variable. The contract instance decides which function will be
invoked—the base or derived contract.

Take a look at the following code snippet:

ParentContract pc = new ChildContract();

The preceding code creates a child contract and stores the reference
in the parent contract type variable. This is how contract
polymorphism is implemented in Solidity as shown in the following
screenshot:

Method overriding

Method overriding refers to redefining a function available in the
parent contract having the same name and signature in the derived
contract. The next code segment shows this. A parent contract
contains two functions, setinteger and cetinteger. A child contract
inherits from the parent contract and provides its own
implementation of cetinteger by overriding the function.

Now, when a call to the cetinteger function is made on the child
contract even while using a parent contract variable, the child
contract instance function is invoked. This is because all functions
in contracts are virtual and based on contract instance; the most
derived function is invoked, as shown in the following screenshot:

Abstract contracts

Abstracts contracts are contracts that have partial function
definitions. You cannot create an instance of an abstract contract.
An abstract contract must be inherited by a child contract for
utilizing its functions. Abstract contracts help in defining the
structure of a contract and any class inheriting from it must ensure
to provide an implementation for them. If the child contract does
not provide the implementation for incomplete functions, even its
instance cannot be created. The function signatures terminate using
the semicolon, ;, character. There is no Solidity-provided keyword
to mark a contract as abstract. A contract becomes an abstract class
if it has functions without implementation.

The screenshot shown next is an implementation of an abstract
contract. The abstractrellowor1id contract is an abstract contract as it
contains a couple of functions without any definitions. cetvaiue and
setvalue are function signatures without any implementation. There
is another method that returns a constant. The purpose of addanumber
is to show that there can be functions within an abstract contract
containing implementation as well. The abstractie11owor1d abstract
contract is inherited by the ne110wor1d contract that provides
implementation for all the methods. The ciient contract creates an
instance of the re11owor1d contract using the base contract variable
and invokes its functions as shown in the following screenshot:

bragma solidity ©.4.19;

Interfaces

Interfaces are like abstract contracts, but there are differences.
Interfaces cannot contain any definition. They can only contain
function declarations. It means functions in interfaces cannot
contain any code. They are also known as pure abstract contracts.
An interface can contain only the signature of functions. It also
cannot contain any state variables. They cannot inherit from other
contracts or contain enums or structures. However, interfaces can
inherit other interfaces. The function signatures terminate using the
semicolon ; character. Interfaces are declared using the interrace
keyword following by an identifier. The next code example shows an
implementation of the interface. Solidity provides the interface
keyword for declaring interfaces. The 11e110wor1d interface is defined
containing two function signatures—cetvaiue and setvaive. There are
no functions containing any implementation. rxei1oworid is
implemented by the nei1owor1d contract. Contract intent to use this
contract would create an instance as it would do normally as shown
in the following screenshot:

Summary

This brings us to the end of this chapter. It was a heavy chapter that
focused primarily on smart contracts, the different ways to create
an instance, and all the important object-oriented concepts related
to them, including inheritance, polymorphism, abstraction, and
encapsulation. Multiple types of inheritance can be implemented in
Solidity. Simple, multiple, hierarchical, and multi-level inheritance
were discussed, along with usage and implementation of abstract
contracts and interfaces. It should be noted that using inheritance
in Solidity, there is eventually just one contract that is deployed
instead of multiple contracts. There is just one address that can be
used by any contract with a parent-child hierarchy.

The next chapter will focus purely on functions within contracts.
Functions are central to writing effective Solidity contracts. These
are functions that help change the contract state and retrieve them.
Without functions, having any meaningful smart contracts is
difficult. Functions have different visibility scope, multiple
attributes are available that affect their behavior, and also help in
accepting Ether. Stay tuned for a function ride in the next chapter!

Functions, Modifiers, and
Fallbacks

Solidity is maturing and providing advanced programming
constructs so that users can write better smart contracts. This
chapter is dedicated to some of the most important smart contract
constructs, such as functions, modifiers, and fallbacks. Functions
are the most important element of a smart contract after state
variables. It is functions that help to create transactions and
implement custom logic in Ethereum. There are various types of
functions, which will be discussed in depth in this chapter.
Modifiers are special functions that help in writing more readily
available and modular smart contracts. Fallbacks are a concept
unique to contract-based programming languages, and they are
executed when a function call does not match any existing declared
method in the contract. Finally, every function has visibility
attached to it that affects its availability to the external caller, other
contracts, and contracts in inheritance.

This chapter covers the following topics:

¢ Input parameters and output parameters

Returning multiple parameters

View functions

Pure functions

Scopes and declarations

Visibility and getters

Internal function calls
External function calls
Modifiers

Fallback functions

Function input and output

Functions would not be that interesting if they didn't accept
parameters and return values. Functions are made generic with the
use of parameters and return values. Parameters can help in
changing function execution and providing different execution
paths. Solidity allows you to accept multiple parameters within the
same function; the only condition is that their identifiers should be
uniquely named.

The following code snippets show the following multiple functions,
each with different constructs for parameters and return values:

1. The first function, singilerncomingparameter, accepts one
parameter named _data Of type int and returns a single return
value that is identified using output of type int. The function
signature provides constructs to define both the incoming
parameters and return values. The return keyword in the
function Signature helps define the return types from the
function. In the following code snippet, the return keyword
within the function code automatically maps to the first
return type declared in the function signature:

function singleIncomingParameter(int _data) returns (int
_output) {
return _data * 2;

}

2. The second fU.IlCtiOl’l, multipleIncomingParameter, accepts two
parameters: _data and _dataz, which are both of type int and
return a single return value identified using _output of type
int, as follows:

function multipleIncomingParameter(int _data, int _data2)
returns (int _output) {
return _data * _data2;

}

3. The third function, muitipieoutgoingrarameter, accepts one
parameter, _data, of type int and returns two return values
identified using square and nair, which are both of type int. In
the following code snippet, returning multiple parameters is
something unique to Solidity and is not found in many
programming languages:

function multipleOutgoingParameter(int _data) returns (int
square, int half)

{
square = _data * _data;
half = _data /2 ;

4. The fourth function, muitipieoutgoingTupie, iS similar to the third
function mentioned previously. However, instead of
assigning return values as separate statements and
variables, it returns values as a tuple. A tuple is a custom
data structure consisting of multiple variables, as shown in
the following code snippet:

function multipleOutgoingTuple(int _data) returns (int square,
int half)
{

(square, half) = (_data * _data,_data /2);

}

The entire contract code is shown in the following
screenshot:

pragma solidity "0.4.19;
contract Parameters {

function singleIncomingParameter(int data) returns (int _output) {
return _data * 2;

}

function multipleIncomingParameter(int data, int data2) returns (int _output) {
return _data * _data2;

}

function multipleQutgoingParameter(int data) returns (int square, int half) {
square = data * _data;
half = data /2 ;

}

function multipleOutgoingTuple(int data) returns (int square, int half) {
(square, half) = (_data * _data, data /2);

}

}

It is also possible to declare parameters without any identifier at all.
This feature does not have much utility, however, as those
parameters cannot be referenced within the function code.
Similarly, return values can be declared without any name.

Modifiers

Modifiers are another concept unique to Solidity. Modifiers help in
modifying the behavior of a function. Let's try to understand this
with the help of an example. The following code does not use
modifiers; in this contract, two state variables, two functions, and a
constructor are defined. One of the state variables stores the
address of the account deploying the contract. Within the
constructor, the global variable msg.sender is used to input the account
value in the owner state variable. The two functions check whether
the caller is the same as the account that deployed the contract; if it
is, the function code is executed, otherwise it ignores the rest of the
code. While this code works as is, it can be made better both in
terms of readability and manageability. This is where modifiers can
help. In this example, the checks are made using the ir conditional
statements. Later, in the next chapter, we will see how to use new
Solidity constructs, such as require and assert, to execute the same
checks without ir conditions. Take a look at the following
screenshot of the code snippet depicting modifiers:

pragma solidity "@.4.17;

contract ContractWithoutModifier {

address owner;
int public mydata;

function ContractWithoutModifier(){
owner = msg.sender;
¥

function AssignDoubleValue(int data) public {
if(msg.sender == owner) {
mydata = _data * 2;

}
}
function AssignTenerValue(int data) public {
if(msg.sender == owner) {
mydata = data * 10;
}
}

}

Modifiers are special functions that change the behavior of a
function. Here, the function code remains the same, but the
execution path of a function changes. Modifiers can only be applied
to functions. Let's now see how to write the same contract using
modifiers shown in the following screenshot:

pragma solidity "e.4.17;

contract ContractWithModifier {

address owner;
int public mydata;

function ContractWithoutModifier(){
owner = msg.sender;

}

modifier isOwner {
// require(msg.sender == owner);
if(msg.sender == owner) {
) =

}

function AssignDoubleValue(int data) public isOwner {
mydata = data * 2;
}

function AssignTenerValue(int data) public ({
mydata = _data * 10;
}

}

The contract shown here has the same constructs: a constructor,
two state variables, and two functions. It also has an additional
special function that is defined using the modirier keyword. The
function code for both the AssignDoubleValue and AssignTenervalue
functions are different, although they have similar functionality.
These functions do not use the ir condition to check whether the
caller of the function is the same as the account that deployed the
contract; instead, these functions are decorated with the modifier
name in their signature.

Let's now try to understand the modifier construct in Solidity and
its usage.

Modifiers are defined using the modirier keyword and an identifier.
The code for modifier is placed within curly brackets. The code
within a modifier can validate the incoming value and can
conditionally execute the called function after evaluation. The _
identifier is of special importance here—its purpose is to replace
itself with the function code that is invoked by the caller.

When a caller calls the assignpoubievaiue function, which is decorated
with the isowner modifier, the modifier takes control of the execution
and replaces the _ identifier with the called function code, that

iS, Assignpoublevalue. Eventually, in EVM, the modifier looks like the
following code during runtime:

modifier isOwner {

// require(msg.sender == owner);
if(msg.sender == owner) {
mydata = _data * 2;

b

b

The same modifier can be applied to multiple functions, and the _
identifier can be replaced to the called function code.

This helps in writing cleaner, more readable, and more
maintainable code. Developers do not have to keep repeating the
same code in every function or check for the incoming value when
executing a function.

The view, constant, and pure
functions

Solidity provides special modifiers for functions, such as view, pure,
and constant. These are also known as state mutability attributes
because they define the scope of changes allowed within the
Ethereum global state. The purpose of these modifiers is similar to
those discussed previously, but there are some small differences.
This section will detail the use of these keywords.

Writing smart contract functions helps primarily with the following
three activities:

e Updating state variables
¢ Reading state variables

¢ Logic execution

The execution of functions and transactions costs gas and is not free
of cost. Every transaction needs a specified amount of gas based on
its execution and callers are responsible for supplying that gas for
successful execution. This is true for transactions or for any activity
that modifies the global state of Ethereum.

There are functions that are only responsible for reading and
returning the state variable, and these are like property getters in
other programming languages. They read the current value in a
state variable and return values back to the caller. These functions
do not change the state of Ethereum. Ethereum's documentation (ht
tp://solidity. readthedocs.io/en/v0.4.21/contracts.html) mentions the

http://solidity.readthedocs.io/en/v0.4.21/contracts.html

following statements in relation to things that modify state:

e Writing to state variables

e Emitting events

e Creating other contracts

e Using seifdestruct

¢ Sending Ether via calls

e Calling any function not marked view OT pure
e Using low-level calls

e Using inline assembly that contains certain opcodes

Solidity developers can mark their functions with the view modifier
to suggest to EVM that this function does not change the Ethereum
state or any activity mentioned before. Currently, this is not
enforced, but it is expected to be in the future.

An example of the view function is shown in the following
screenshot:

pragma solidity "0.4.17;

contract ViewFunction {

function GetTenerValue(int _data) public view returns (int) {
return _data * 10;

}
}

If you have functions that just return values without any
modification of state, they can be marked with the view function.

It is also worth noting that the view functions are also known as
constant functions. The constant functions were used in previous
versions of Solidity.

The pure functions are more restrictive in terms of state mutability
when compared to the view functions; however, their purpose is the
same, that is, to restrict state mutability. It is also worth noting that
even the pure functions are not enforced as of the time of writing, but
we expect it to be in the future.

The pure functions add further restrictions on top of the view
functions; for example, a pure function is not allowed to even read
the current state of Ethereum. In short, the pure functions disallow
reading and writing to Ethereum's global state. The additional
activities not allowed according to documentation include the
following;:

e Reading from state variables

L ACCGSSiIlg this.balance OI <address>.balance

Accessing any of the members of biock, tx, and msg (with the
exception of msg.sig and msg.data)

Calling any function not marked pure

Using inline assembly that contains certain opcodes

The previous function has been rewritten as a pure function in the
following screenshot:

pragma solidity "0.4.17;

contract PureFunction {

function GetTenerValue(int data) public pure returns (int) {
return _data * 10;
}

The address functions

In the chapter relating to data types, we purposely did not explain
the functions related to the addaress data type. Although these
functions could have been covered there, some of these functions
can execute a fallback function automatically, and hence it is
covered here.

Address provides five functions and a single property.
The only property provided by address is the baiance property, which

provides the balance available in an account (contract or individual)
in wei, as shown in the following code snippet:

<<account>>.balance ;

In the preceding code, account is a valid Ethereum address and
this returns the balance available in this in terms of wei.

Now, let's take a look at the methods provided by an account.

The send method

The send method is used to send Ether to a contract or to an
individually owned account. Take a look at the following code
depicting the send method:

<<account>>.send(amount);

The send function provides 2,300 gas as a fixed limit, which cannot
be superseded. This is especially important when sending an
amount to a contract address. To send an amount to an individually
owned account, this amount of gas is enough. The send function
returns a boolean true/faise as a return value. In this case, an
exception is not returned; instead, raise is returned from the
function. If everything goes right in an execution, true is returned
from the function. If send is used along with the contract address, it
will invoke the fallback function on the contract. We will investigate
fallback functions in detail in the following section.

Now, let's see an example of the send function, as shown in the
following screenshot:

function SimpleSendToAccount() public returns (bool) {
return msg.sender.send(1);
}

In the preceding screenshot, the send function sent 1 wei to the caller
of the simpiesendToaccount function. We already learned about msg. sender
in previous chapters dealing with global variables.

send 1S a low-level function and should be used with caution as it can

invoke fallback functions that may recursively call back within the
calling contract again and again. There is a pattern known as
Check-Deduct-Transfer (CDF), or sometimes as Check-
Effects-Interaction (CEI), which we look at in the following
screenshot. In this pattern, it is assumed that balances are
maintained within a mapping. The mapping consists of an address and
its associated balance, as shown in the following screenshot:

mapping (address => uint) balance;

function SimpleSendToAccount(uint amount) public returns (bool) {
if(balance[msg.sender] >= amount) {

balance[msg.sender] -= amount;

if (msg.sender.send(amount) == true) {
return true;

}

else {
balance[msg.sender] += amount;
return false;

}

In this example, a check is first made to see if the caller has a
sufficient balance to withdraw funds. If it has, we can reduce the
amount from the existing balance and call the send method. Then, we
must check that send is successful; if not, return the amount.

It is worth noting that a lot of sources claim send is being deprecated,
but I do not think it is. There are specific usages of the send function
still available, such as sending an amount to multiple accounts.
However, a new function transfer has been introduced to send
Ether from one account to another; an even better solution would
be to ask other contracts and accounts to call a specific method to
withdraw the amount.

The transfer method

The transrer method is similar to the send method. It is responsible for
sending Ether or wei to an address. However, the difference here is
that transfer raises an exception in the case of execution failure,
instead of returning raise , and all changes are reverted. Take a look
at the transrer method in the following screenshot:

function SimpleTransferToAccount() public {
msg.sender.transfer(1);

}

The transrer method is preferred over the send method as it raises an
exception in the event of an error, meaning exceptions are bubbled
up in the stack and halt execution.

The call method

The ca11 method has resulted in a lot of confusion among
developers. There is a ca11 method available via the webs.eth Object,
and there is also the <<address>>.ca11 function. These are two different
functions that have different purposes.

The webs.eth call method can only make calls to a node it is connected
to and is a read- only operation. It is not allowed to change the state
of Ethereum. It does not generate a transaction nor does it consume
any gas. It is used to call the pure, constant, and view functions.

On the other hand, call function provided by address data type can
call any function available within a contract. There are times when
the interface of contract, more commonly known as ABI, is not
available, and so the only way to invoke a function is to use the cai1
method. This method does not adhere to ABI and can call any
function on a need-to-know basis. There is no compile time check
available for these calls, and they return a boolean value of either
true OT false.

It is worth noting that it is not an ideal practice to call a contract function
using the ca11 method, as there are no checks and validation involved.

Every function in a contract is identified at runtime using a 4-bytes
identifier. This 4-bytes identifier is the trimmed-down hash of a
function name along with its parameter types. After hashing the
function name and parameter types, the first four bytes are
considered as the function identifier. The ca11 function accepts these
bytes to call the function as the first parameter and the actual
parameter values as subsequent parameters.

A ca11 function without any function parameter is shown in the
following code. Here, setsalance does not take any parameter:

myaddr.call(bytes4(sha3("SetBalance()")));

A ca11 function with a function parameter is shown in the following
snippet. Here, setsalance takes a single uint parameter:

myaddr.call(bytes4(sha3("SetBalance(uint256)")), 10);

It is also worth noting that the send function seen previously actually
calls the ca11 function internally by supplying zero gas to the
function.

The following code example shows all the possible ways of using
this function. In this example, a contract named ethersox is created
with the following two simple functions:

e setBalance: It has a single state variable, and the purpose of
this function is to add 1e in every invocation to the existing
value of the state variable

® cetsalance: This function is responsible for returning the
current value of a state variable

Another contract named usingca11 is created to invoke methods on
the etnhersox contract via the ca11 function. Let's take a look at the
following functions mentioned in the upcoming code example:

1. simplecall: This function creates an instance of the ethersox
contract and converts it into an address. Using this address,
the ca11 function is used to invoke the setgalance function on
the etnersox contract.

2. simplecallwitheas: This function creates an instance of the
EtherBox contract and converts it into an address. Using this

address, the ca11 function is used to invoke the setsalance
function on etnersox. Alongside the call, gas is also sent along,
such that function execution can be completed if it needs
more gas.

3. simplecallwithGasAndvalue: This function creates an instance of
the ethersox contract and converts it into an address. Using
this address, the ca11 function is used to invoke the setsalance
function on etnersox. Alongside the call, gas is also sent along,
such that function execution can be completed if it needs
more gas. Apart from gas, it is also possible to send Ether or
wei to payable functions.

Take a look at the preceding functions in the following screenshot:

pragma solidity "0.4.17;

contract EtherBox {
uint balance;

function SetBalance() public {
balance = balance + 10;

}

function GetBalance() public payable returns(uint) {
return balance;

}
}

contract UsingCall {
function UsingCall() public payable {

}

function SimpleCall() public returns (uint) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
status = myaddr.call(bytes4(sha3("SetBalance()")));
return eb.GetBalance();

}

function SimpleCallwithGas() public returns (bool) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
status = myaddr.call.gas(200000)(bytes4(sha3("GetBalance()")));
return status;

}

function SimpleCallwithGasAndvValue() public returns (bool) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
status = myaddr.call.gas(200000).value(1)(bytes4(sha3("GetBalance()")));
return status;

The callcode method

This function is deprecated and will not be discussed here. More
information about cai1code is available at http://solidity.readthedocs.io/en/

develop/introduction-to-smart-contracts.html.

http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html

The delegatecall method

This function is, again, a low-level function responsible for calling
functions in another contract using the callers's state variables.
Generally, it is used along with libraries in Solidity. More
information about delegatecall is available at: http://solidity.readthedocs.i

o/en/develop/introduction-to-smart-contracts.html.

http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html

The fallback function

The fallback functions are a special type of function available only
in Ethereum. Solidity helps in writing fallback functions. Imagine a
situation where you, as a Solidity developer, are consuming a smart
contract by invoking its functions. It is quite possible that you use a
function name that does not exist within that contract. In such
cases, the fallback function, as the name suggests, would
automatically be invoked.

A fallback function is invoked when no function name matches the
called function.

A fallback function does not have an identifier or function name. It
is defined without a name. Since it cannot be called explicitly, it
cannot accept any arguments or return any value. An example of a
fallback function is as follows:

pragma solidity 70.4.17;

contract FallbackFunction {

function () {
var a = 0;
}

3

A fallback function can also be invoked when a contract receives any
Ether. This usually happens using the sendtransaction function
available in webs to send Ether from one account to a contract.
However, in this case, the fallback function should be payab1e,

otherwise it will not be able to accept the Ether and will raise an
error.

The next important question to be answered is how much gas is
needed to execute this function. Since it cannot be called explicitly,
gas cannot be sent to this function. Instead, EVM provides a fixed
stipend of 2,300 gas to this function. Any consumption of gas
beyond this limit will raise an exception and the state will be rolled
back after consuming all the gas that was sent along with the
original function. It is therefore important to test your fallback
function to ensure that it does not consume more than 2,300 gas.

It is also worth noting that fallback functions are one of the top
causes of security lapses in smart contracts. It is very important to
test this function from a security perspective before releasing a
contract on production.

Let's now try to understand the fallback function with the help of
some examples.

We will use the same example as we used for explaining the ca11
function of the address data type. However, this time, we have
implemented a payanie fallback function in the etnersox contract whose
entire purpose is to raise an event and an additional function that
calls an invalid function. The event is also declared within the
function. We will look at events in more depth in the next chapter.

When you execute each of the methods in the usingcai1 contract, you
should notice that the fallback function is not invoked for any of the
functions apart from one that does not call a correct function, as
shown in the following screenshot:

pragma solidity "@.4.17;

contract EtherBox {
uint balance;
event logme(string);

function SetBalance() public {
balance = balance + 10;
}

function GetBalance() public payable returns(uint) {
return balance;

}

function() payable {
logme("fallback called");
}

}

contract UsingCall {
function UsingCall() public payable {

}

function SimpleCall() public returns (uint) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
status = myaddr.call(bytes4(sha3("SetBalance()")));
return eb.GetBalance();

}

function SimpleCallwithGas() public returns (bool) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
return status = myaddr.call.gas(200000) (bytes4(sha3("GetBalance()")));

}

function SimpleCallwithGasAndvalue() public returns (bool) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
return status = myaddr.call.gas(200009).value(1)(bytes4(sha3("GetBalance()")));

}

function SimpleCallwithGasAndvalueWithWrongName() public returns (bool) {
bool status = true;
EtherBox eb = new EtherBox();
address myaddr = address(eb);
return myaddr.call.gas(200000).value(1)(bytes4(sha3("GetBalancel()")));

Fallback functions are also invoked when using the send method,
USil’lg the webs sendTransaction function, or the transfer method.

Summary

Once again, this was a heavy chapter that focused primarily on
functions, including the address functions and the pure, constant, and
view functions. The address functions can be intimidating, especially
when you consider their multiple variations and their relationship
with the fallback functions. If you are implementing a fallback
function, remember to pay special attention to testing, especially
from a security point of view. You should also pay special attention
when using low-level Solidity functions such as send, ca11, and transfer
as they invoke the fallback function implicitly. Always try using
contract functions that use ABI as it ensures that the proper
function, along with its data types, is being called.

In the next chapter, we will dive deep into the world of events,
logging, and exception handling in Solidity. Stay tuned!

Exceptions, Events, and
Logging

Writing contracts is the fundamental purpose of Solidity. However,
writing a contract demands sound error and exception handling.
Errors and exceptions are the norm in programming and Solidity
provides ample infrastructure for managing both. Writing robust
contracts with proper error and exception management is one of the
top best practices. Events are another important construct in
Solidity. For all topics that we've discussed so far, we've seen a
caller that invokes functions in contracts; however we have not
discussed any mechanism through which a contract notifies its
caller and others about changes in its state and otherwise. This is
where events come in. Events are a part of event-driven programs
where, based on changes within a program, it proactively notifies its
caller about the changes. The caller is free to use this information or
ignore it. Finally, both exceptions and events, to a large extent, use
the logging feature provided by EVM.

In this chapter, we will cover the following topics:

¢ Understanding exception handling in Solidity

Error handling with require

Error handling with assert

Error handling with revert

Understanding events

Declaring an event

e Using an event

e Writing to logs

Error handling

Errors are often inadvertently introduced while writing contracts,
so writing robust contracts is a good practice and should be
followed. Errors are a fact of life in the programming world and
writing error-free contracts is a desired skill. Errors can occur at
design time or runtime. Solidity is compiled into bytecode and there
are design-level checks for any syntax errors at design time while
compiling. Runtime errors, however, are more difficult to catch and
generally occur while executing contracts. It is important to test the
contract for possible runtime errors, but it is more important to
write defensive and robust contracts that take care of both design
time and runtime errors.

Examples of runtime errors are out-of-gas errors, divide by zero
errors, data type overflow errors, array-out-of-index errors, and so
on.

Until version 4.10 of Solidity there was a single throw statement
available for error handling. Developers had to write multiple
if...else Statements to check the values and throw in the case of an
error. The throw Statement consumes all the provided gas and reverts
to the original state. This is not an ideal situation for architects and
developers as unused gas should be returned back to the caller.

From version 4.10 of Solidity newer error handling constructs were
introduced and tnhrow was made obsolete. These were the assert,
require, and revert Statements. In this section, we will look into these
error handling constructs.

It is worth noting that there are no try..catch Statements or
constructs to catch errors and exceptions.

The require statement

The word require denotes constraints. Declaring require Statements
means declaring prerequisites for running the function; in other
words, it means declaring constraints that should be satisfied before
executing the following lines of code.

The require Statement takes in a single argument: a statement that
evaluates to a true Or raise boolean value. If the evaluation of the
statement is raise, an exception is raised and execution is halted.
The unused gas is returned to the caller and the state is reversed to
the original. The require statement results in the revert opcode, which
is responsible for reverting the state and returning unused gas.

The following code illustrates use of the require statement:

pragma solidity 70.4.19;
contract RequireContract {

function ValidInt8(uint data) public returns(uint8){
require(_data >= 9);
require(_data <= 255);

return uint8(_data);

}

function ShouldbeEven(uint data) public returns(bool){
require(_data % 2 == 0);
return true;

}

Let's take a look at the following functions depicted in the preceding

screenshot:

1. validints: This function uses a couple of require Statements. In
constructs, a statement checks for values greater than or
equal to zero. If this statement is true, execution passes to the
next statement. If this statement is raise, an exception is
thrown and execution stops. The next require statement
checks whether the value is less than or equal to 2ss. If the
argument is greater than 2ss, the statement evaluates to raise
and throws an exception.

2. shouldbeeven: This function is of a similar nature. In this
function, require checks whether the incoming argument is
even or odd. If the argument is even, execution passes to the
next statement; otherwise an exception is thrown.

The require statement should be used for validating all arguments
and values that are incoming to the function. This means that if
another function from another contract or function in the same
contract is called, the incoming value should also be checked using
the require function. The require function should be used to check the
current state of variables before they are used. If require throws an
exception, it should mean that the values passed to the function
were not expected by the function and that the caller should modify
the value before sending it to a contract.

The assert statement

The assert statement has a similar syntax to the require statement. If it
accepts a statement, that should then evaluate to either a true or
false value. Based on that, the execution will either move on to the
next statement or throw an exception. The unused gas is not
returned to the caller and instead the entire gas supply is consumed
by assert. The state is reversed to original. The assert function results
in invalid opcode, which is responsible for reverting the state and
consuming all gas.

The function shown previously has been extended to include an
addition to the existing variable. However, remember that adding
two variables can result in an overflow exception. This is verified
using the assert statement; if it returns true, the value is returned,
otherwise the exception is thrown.

The following screenshot illustrates the use of the assert function:

pragma solidity "0.4.19;
contract AssertContract {

function ValidInt8(uint _data) public returns(uint8){
require(_data >= 0);
require(_data <= 255);

uint8 value = 20;

//checking datatype overflow
assert (value + _data <= 255);

return uint8(value + _data);

While require should be used for values coming from the outside,
assert Should be used for validating the current state and condition
of the function and contract before execution. Think of assert as
working with runtime exceptions that you cannot predict. The
assert Statement should be used when you think that a current state
has become inconsistent and that execution should not continue.

The revert statement

The revert statement is very similar to the require function. However,
it does not evaluate any statement and does not depend on any state
or statements. Hitting a revert statement means an exception is
thrown, along with the return of unused gas, and reverts to its
original state.

In the following example, an exception is thrown when the
incoming value is checked using the ir condition; if the ir condition
evaluation results in raise, it executes the revert function. This results
in an exception and execution stops, as shown in the following
screenshot:

pragma solidity "0.4.19;
contract RevertContract {
function ValidInt8(int data) public returns(uint8){
if(_data < @ || _data > 255) {

revert();
}

return uint8(_data);

Events and logging

We have seen the usage of events in previous chapters without
going into any detail. In this section, however, we will look into
events in more depth. Events are well known to event-driven
programmers. Events refer to certain changes in contracts that raise
events and notify each other such that they can act and execute
other functions.

Events help us write asynchronous applications. Instead of
continuously polling the Ethereum ledger for the existence of a
transaction and then blocking with certain information, the same
procedure can be implemented using events. This way, the
Ethereum platform will inform the client if an event has been
raised. This helps when writing modular code and also conserves
resources.

Events are part of contract inheritance, where a child contract can
invoke events. Event data is stored along with block data. The
logseloom Value is the event data, as shown in the following
screenshot:

niner:
nirfash:
once:

nnber:
parenttsh:
receiptshoot

Declaring events in Solidity is very similar to performing functions.
However, events do not have any body. A simple event can be
declared using the event keyword followed by an identifier and any
parameters it wants to send along with the event as shown in the
following code:

event LogFunctionFlow(string);

In the preceding line of code, event is the keyword used for declaring
events followed by its name and a set of parameters that will be sent
along with the event. Any string text can be sent with the
LogFunctionFlow €vent.

Using an event is quite simple. Simply invoke an event using its
name and pass on the arguments it expects. For the LogrunctionFiow
event, the invocation would look as follows which is similar to a
function call with parameters:

LogFunctionFlow ("I am within function x");

The following code snippet shows an event in use. In this example,
an event, Logrunctionrlow , 1S declared with a string as its sole
parameter. The same event is invoked multiple times from the
validints function, providing text information during various stages
within the function:

pragma solidity 70.4.19;

contract EventContract {

event LogFunctionFlow(string);

function ValidInt8(int data) public returns(uint8){
LogFunctionFlow("Within function ValidInt8");

if(_data < @ || _data > 255) {
revert();
¥
LogFunctionFlow("Value is within expected range");

LogFunctionFlow("Returning value from function");

return uint8(_data);

Executing this contract in Remix shows the result, which contains
three logs with event information as shown in the following
screenshot:

Events can also be watched from custom applications and
decentralized applications using webs.

Events can be filtered using parameters names.
The following two methods allow us to watch for events:

1. Watching individual events: In this method, using webs,
individual events from contracts can be watched and

tracked. When the exact event is fired from a contract, it
helps execute a function in the webs client. An example of
watching an individual event is shown in the following
screenshot. Here, ageread is the name of the event we are
interested in and watching for. We read froms1ock number
25000 UNtil the 1atest block. First, a reference to the ageread
event is made and a watcher is added to the reference. The
watcher takes a promise function that is executed whenever
the ageread event is fired:

~ myEvent = instance.ageRead({fromBlock: 25000, toBlock: 'latest'});
myEvent.watch(1(error, result){
if(error) {
console.log(error);

}

console.log(result.args)

i

2. Watching all events: In this method, using webs all events
from contracts can be watched and tracked. When any event
is fired from a contract, it notifies and helps to execute a
function in the webs client in response. In this case, the event
can be filtered using an event name. An example of watching
all events is shown in the following screenshot. Here, we are
interested in and watching for any event from a contract. We
read fromslock NUMber 2se00 until the 1atest block. First, a
reference to aiievents is made and a watcher is added to the
reference. The watcher then takes a promise function that is
executed whenever any event is fired:

var myEvent = instance.allEvents({fromBlock: 24000, toBlock: 'latest'});
myEvent.watch(function(error, result){
if(error) {
console.log(error);

}

console.log(result)

ik

The value in the resuit object from the event is shown in
the following screenshot:

address: '0x600c320dd768fb55f03748d4d4028db2catco6a9’,

blockNumber: 24864,

transactionHash: '0x38ca3d4b40f8e75d27ab3950234d837e96dbdde86178139c4e675dc6531ee15",
transactionIndex: 9,

blockHash: '@x778b9a9a89b46@9475dcc52d4c60ded4254c2418356b4886496488157761calc’,

logIndex: 0,
removed: false,
event: 'ageRead’,

args: { "'y 33" }}

Summary

In this chapter, we covered exception handling and events. These
are important topics in Solidity, especially when writing any serious
decentralized applications on the Ethereum platform. Exception
handling in Solidity is implemented using three functions: assert,
require, and revert. Although they sound similar, they have different
purposes, which were explained in this chapter with the help of
examples. Events help us write scalable applications. Instead of
continuously polling the platform for data and wasting resources,
it's better to write events and then wait for them to execute
functions asynchronously. This was also covered in this chapter.

In the next chapter, we will focus on using Truffle, one of the most
popular development platforms for developing an application on
the Ethereum platform. Stay tuned!

Truffle Basics and Unit Testing

Programming languages need a rich ecosystem of tools that eases
development. Like any application, even blockchain based
decentralized applications should have a minimal Application
Lifecycle Management (ALM) process. It is important for any
application to have a process of build, test, and deploy
continuously. Solidity is a programming language and needs
support from other tools to ensure that developers can develop,
build, test, and deploy contracts with ease rather than going
through the painful process of deploying and testing them. This
improves their productivity and eventually helps bring the
application to market faster, better, and cheaper. It is also possible
to introduce DevOps for smart contracts with the help of such tools.
Truffle is one such development, testing, and deployment utility
that can make these activities a breeze.

This chapter covers the following topics:

e Application development life cycle management
¢ Understanding and installing Truffle
e Contract development with Truffle

e Testing contracts with Truffle

Application development life
cycle management

As mentioned before, every serious application has some
development process built around it. Typically, it involves
designing, building, testing, and deploying. The contract ALM is no
different from any other software or programming development life
cycle. The first step in contract development is to get and finalize
requirements about the problem under consideration.
Requirements form the starting activity for any decentralized
application. Requirements contain descriptions of problems, use
cases, and detailed testing strategy.

Architects take functional and technical requirements as their
inputs and create application architecture and design. They also
document them using notations easily understandable by others.
The project development team takes these architecture and design
documents and breaks them down into features and sprints. The
development team starts working on building contracts and other
artifacts based on this documentation. The contracts are frequently
deployed to a test environment for testing and to ensure that they
are in a working condition, both technically and functionally. The
contracts are unit tested to check their functionality in isolation. If
there are unit test failures, the entire build and test process should
be repeated. At the end, all artifacts are deployed to the production
environment.

As you can see, ALM is an involved process and can consume
substantial time and productivity on the part of developers. There is
a need for tools and automation to help ease this process, and this is
where Truffle as a utility shines.

Truffle

Truffle is an accelerator that helps increase the speed of
development, deployment and testing, and increases developer
productivity. It is built specifically for Ethereum-based contract and
application development. The latest Truffle version is 4. It is a node
runtime-based framework that can help implement DevOps,
continuous integration, continuous delivery, and continuous
deployment with ease.

Installing Truffle is quite simple— a prerequisite for installing
Truffle is Node.js, as it is deployed as a node package.

Truffle can be installed by executing the following npm command
from the command line:

$ npm install -g truffle

Here npm refers to node package manager and the -g switch signifies
installation at global scope. The following screenshot shows the
installation of Truffle on Windows Server 2016. The command is
the same for Linux distribution as well:

B8 tinftator, Command Prompt = 0 X
Microsoft Windous [Version 16.0,14393)
() 2616 Microsoft Comporation. ALL rights reserved,

\Users\citynextadninyngn install -g truffle

\Users\citynextadnin\AppData'\Roaning\npm\truffle -» C:\Users\citynextadnin\AppData\Roaning\nom\node_nodules\truffle\y
11d\c11, bundled.

+ trufflel.0.6

added 91 packages in 11,894

Running truffie --version Shows the current version and all
commands available with Truffle as shown in the following
screenshot:

M@ Administator Command Prompt

(\Users\cLtynextadninytruftle --version
Truffle vd,0.6 - & developnent framework for Ethereun

Isage; truftle <comand> [options]

(onsole
develop
(ngate
mstall 1
ubLish
networks
hatch
serye
XEC
Ungox
Version

Initialize new and empty Ethereun project
(onpile contract source files

Run nigrations to deploy contracts

(alias for nigrate)

Execute build pipeline (if configuration present)
Run JavaScript and Solidity tests

Interactively debug any transaction on the blockchain (experinental)
Print the conpiled opcodes for given contract
Run & console with contract abstractions and comands available

Open a console with a Local developnent blockchain
Helper to Create new contracts, nigrations and tests
tall a package fron the Ethereun Package Repistry
Pubhsh 3 Package to the Ethereun Package Registry
Stow addresses for deployed contracts on each network
lgtch filesysten for changes and rebuild the project automatically
Serve the build directory on localhost and watch for changes
Execute 3 75 nodule within this Truffle enviroment
Download a Truffle Box, 3 pre-built Truftle project
Show version nutber and xit

Development with Truffle

Using Truffle is quite simple. Truffle provides lots of scaffolding
code and configuration by default. Developers need only to
reconfigure some of the out-of-the-box configuration options and
focus on writing their contracts. Let's take a look at the following
steps:

1. The first step is to create a project folder that will hold all
projects- and Truffle-generated artifacts.

2. Navigate to that folder and enter the init command. The init
command refers to the initiation and initialization of Truffle
within the folder. It will generate appropriate folders, code
files, configuration, and linkage within the folder as shown
in the following screenshot:

C:\>mkdir TruffleProject

C:\>cd TruffleProject

C:\TruffleProject>truffle init
Downloading. ..

Unpacking...

Setting up...

Unbox successful. Sweet!

Commands:
Compile: truffle compile

Migrate: truffle migrate
Test contracts: truffle test

The preceding code results in a generated folder structure
as shown in the following screenshot:

7 < | TruffleProject
« v A > This PC » Local Disk (C:) » TruffleProject »
| [] Name
7 Quick access
contracts
m Desktop
migrations
4 Downloads
test
< Documents @ truffle
= Pictures @ truffle-config
4 This PC
¥ Network

Let's take a look at the following folders shown in the
preceding screenshot:

e The contracts folder contains a single file named nigrations. sol.
It contains a contract responsible for deploying custom
contracts to an Ethereum network. Any custom contracts
should be placed within this folder.

e The nigrations folder contains multiple JavaScript files for
executing the contract deployment process. These
JavaScript files should be modified to ensure that all custom
contracts are visible to Truffle and Truffle can chain and link
them in appropriate order for deployment. It contains
multiple JavaScript files prefixed with a number. These
scripts are executed in a consecutive order starting from 1.

e The test folder is empty but any custom test scripts should be
placed within this folder.

e There are two JSON configuration files—trurrie and trufrie-
config. The main configuration file of interest for a project is
truffle.js and this should be customized for the project. It
should export a JSON object such that Truffle runtime can
use it to configure the environment.

An important configuration information that should be
provided here is the network information to which Truffle
should connect and deploy contracts.

3. The following code snippet can be used to configure the
network configuration. There should be an existing Geth
instance running with an RPC endpoint and port enabled;
ganache-cli can also be used instead of geth for deploying
contracts using the JSON-RPC protocol. A network

configuration element should be defined to connect to an
existing Ethereum network. The network is configured with
a name and, similarly, multiple networks can be configured
for different environments:

module.exports = {
networks: {
development: {
host: "127.0.0.1",
port: 8545,
network_id: "*" // Match any network id

}i

4. Create a new contract and store it within the contracts folder
with first.so1 as filename and content, as shown in the
following screenshot:

pragma solidity 70.4.17;
contract First {
int public mydata;
function GetDouble(int _data) public returns (int
_output) {
mydata = _data * 2;
return _data * 2;

5. Write another contract as shown in the following screenshot
and save it in the same folder as earlier with second.so1 as the
filename:

pragma solidity 70.4.17;

import "./first.sol";
contract Second {

address firstAddress;
int public _data;

function Second(address _first) public {

firstAddress = _first;
}
function SetData() public {
First h = First(firstAddress);

_data = h.GetDouble(21);

Eventually, the contract folder looks as shown in the following

screenshot:
| ™ s | contracts
Home Share View
e v > This PC > Local Disk (C)) » TruffleProject > contracts
[] Name
» Quick access _
~ first.sol
m Desktop o -
Migrations.sol
4 Downloads « _
. second.sol
“ Documents g
= Pictures »
= This PC
¥ Network

6. Modify the migrations folder to add another script file to it. It
should be noted that each filename must be incremented by
one for setting the order of deployment of contracts. In our
case, the name of the file is 2_custon.js. The content of this file

is shown next. The first two lines of this file refer to two
contracts written earlier. This file exports a function that is
invoked by Truffle while deploying. The function first
deploys the first contract and, after successfully deploying
the first contract, deploys the second contract as shown in
the following screenshot:

var hw = artifacts.require("First");

var hwl = artifacts.require("Second");

module.exports = function(deployer) {

deployer.deploy(hw).then
(function() {
return deployer.deploy(hwl, hw.address);

1)ihs

7. Execute the compize command using trufrie.cmd as shown in the
following screenshot. It might give errors and a warning. If
there are any errors or warnings, they should be rectified
before moving ahead:

C:\TruffleProject>truffle.cmd compile
Compiling .\contracts\First.sol...
Compiling .\contracts\Migrations.sol..
Compiling .\contracts\first.sol...
Compiling .\contracts\second.sol...

Compilation warnings encountered:

/C/TruffleProject/contracts/second.s0l:9:5: Warning: No visibility specified. Defaulting to "public".
function Second(address _first) {

A

Spanning multiple lines.

Writing artifacts to .\build\contracts
It is to be noted that on Windows, when executing the trurrie command on
Windows, if it gives an error related to an undefined module, you should
execute trurfie.cnd, instead of just trurrie, with the command.

8. Now it's time to deploy the compiled contracts. Truffle
provides the migrate command and it should be used as
shown in the following screenshot. It is to be noted, that
before running the migrate command, an instance of Geth or
ganache-cli should be running. In case of using Geth mining,
the mining process should also be running. If using testrpc,
miners are not required:

C:\TruffleProject>truffle.cmd migrate
Using network 'development'.

Running migration: 1_initial_migration.js
Deploying Migrations...
. 0X262e57282d269620a66421615806ec7210917d48979747d1cad9cb2106009a68
Migrations: 0x65989fd1cdb5813460258a80c406e(25e00871a3
Saving successful migration to network...
. 0x7282c4bdde56076beaecd71785198ec2b93fd788a126ad40c06¢37105d39402d
Saving artifacts...

Running migration: 2_Custom.js
Deploying First...
. 0x3f507f2ecdc8842ca6149d532401cfa7e325425960041dddb942e64381d7960
First: @xcf52edbof5e9fd1509e5446b7c09889e0f3bebl5

Deploying Second...
. 0xc4bde155b2379d0ec8760e2da238dda96de6448291ae4410d98fef8e951d19a2
Second: 0x713231d09996696623011a0437d8918824dc97db
Saving successful migration to network...
. 0x71114234786b06542a48d374e0da98e6e348atd4d68d6247058c98595b51dd3b
Saving artifacts...

The preceding screenshot shows that both the migration scripts
were executed based on their number ordering. Now, the contracts
are deployed and available for consumption. An instance of contract
can be created using its ABI definition and address. The contract
address along, with the transaction hash, are available.

There are many more activities and commands available with
Truffle; however to keep this chapter concise, we will move towards
understanding unit testing of contracts using Truffle runtime.

Testing with Truffle

Unit testing refers to a type of testing specific to a software unit
and component in isolation. Unit tests help ensure that code in a
contract is written according to functional and technical
requirements. When each of the smallest components is tested
under different scenarios and passes successfully, other important
tests such as integration tests can be performed to test multiple
components.

As mentioned before, Truffle generates a test folder and all test files
should be placed in this folder. Tests can be written in JavaScript as
well as Solidity. Since this is a book on Solidity, tests are focused on
writing using Solidity.

Tests in Solidity are written by authoring contracts and saved as a
Solidity file. The name of the contract should start with the vest
prefix and each function within the contract should be prefixed with
test. Please note the case sensitivity of the test and the test prefix for
both contracts as well as function names.

The following screenshot shows the code for writing tests within the
contract:

pragma solidity "0.4.19;

import "truffle/Assert.sol";
import "truffle/DeployedAddresses.sol”;
import "../contracts/first.sol";

contract TestFirst {
function testGetDoublePositiveUsingDeployedContract() {
First meta = First(DeployedAddresses.First());

Assert.equal(meta.GetDouble(10), 20, "Positive input gives double value");
}

i

There are a few things to note in the vestrirst contract. Important
Trufﬂe—provided libraries such as assert.so1 and DeployedAddresses.sol AI'€
imported so that functions in them can be used.

There can be multiple functions within one contract but for
demonstration purposes a single unit test is written. In practice
there will be multiple tests within the same contract.

The first line in the function creates a reference to the deployed

rirst contract and invokes the cetpoub1ie function. The return value from
this function is compared to the second parameter of the assert.equal
function and, if both are the same, then the test succeeds; otherwise
it fails.

The assert.equal function helps compare an actual return value
with the expected return value.

It is important to understand that, whenever a function within a
contract is invoked, it is a transaction that will eventually be written
in a block and ledger. In effect, testing a function within a contract
also means that you are testing transactions related to your smart
contract.

Tests are executed using the test command as shown in the

following screenshot:

Summary

This chapter introduced Truffle as a utility for easing the processes
of authoring, testing, and deploying Solidity contracts. Instead of
typing and executing each step, Truffle provides easy commands for
compiling, deploying, and testing contracts.

The following chapter will be the last chapter of this book and will
focus on troubleshooting activities and tools related to Solidity.
Debugging is an important aspect of troubleshooting and is an
important skill for any contract developer and development. Remix
debugging facilities will be discussed along with other mechanisms
for debugging contracts.

Debugging Contracts

This is the last chapter of the book. By now, we have looked at
Solidity and Ethereum from a conceptual standpoint, developed
and authored Solidity contracts, and tested them. The only thing
that was not discussed was troubleshooting contracts.
Troubleshooting is an important skill and exercise when dealing
with any programming language. It helps in finding issues and
solving them efficiently. Troubleshooting is both an art and a
science. Developers should learn the art of troubleshooting through
experience as well as by exploring details behind the scenes using
debugging. This chapter will focus on debugging coding issues
related to Solidity contracts.

This chapter covers the following topics:

e Debugging contracts

e Debugging contracts using Remix and Solidity events

Debugging

Debugging is an important exercise when authoring Solidity smart
contracts. Debugging refers to finding issues, bugs, and removing
them by changing code. It is very difficult to debug a smart contract
if there is in adequate support from tools and utilities. Generally,
debugging involves executing each line of code step by step, finding
the current state of temporary, local, and global variables and
walking through each instruction while executing contracts.

There are the following ways to debug Solidity contracts:
¢ Using the Remix editor

e Events

e Block explorer

The Remix editor

We used the Remix editor to write Solidity contracts in the previous
chapters. However, we have not used the debugging utility available
in Remix. The Remix debugger helps us observe the runtime
behavior of contract execution and identify issues. The debugger
works in Solidity and the resultant contract bytecode. With the
debugger, the execution can be paused to examine contract code,
state variables, local variables, and stack variables, and view the
EVM instructions generated from contract code.

The following screenshot of contract code will be used to
demonstrate debugging using the Remix editor:

pragma solidity "0.4.0;
contract DebuggerSampleContract {
int counter = 10;

function LoopCounter(int _input) public view returns (int) {
int returnValue;

for (; _input < counter; _input ++)

{
}

return returnValue;

returnValue += _input;

The contract has a single state variable and function. The function
loops over the provided input till it reaches the value of counter and
returns a cumulative sum to the caller.

Deploying and executing the Loopcounter function will provide an
opportunity to debug this function by clicking on the Debug button
as shown in the following screenshot:

This will bring the focus to the Debugger tab in Remix and here
runtime information about local, state, memory, callstack, stack,
instructions, and call data can be verified for the execution of each
code step.

The following next two screenshots show varied internal
information about contract runtime execution:

v Instructions Iy

000 PUSH1 60

002 PUSH1 40

004 MSTORE

005 PUSH1 04

007 CALLDATASIZE
008 LT

009 PUSH1 3f

011 JUMPI

012 PUSH1 00

014 CALLDATALOAD
015 PUSH29
01000000000000000000000000000000000 ~

v Solidity Locals I}
_input: 10 int256

v Solidity State Iy
counter: 10 int256

v Stepdetail Iy

vm trace step: 42

execution step: 42

add memory:

gas: 3

remaining gas: 2978383

loaded address: 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

Take a look at the second screenshot, as follows:

v Stack I

0: Oxa
1:0x62
2: 0x3426582f

v Storage completely loaded Iy

" 0x290decd9548b62a8d60345a988386fc84babbc95484008f6362f9
3160ef3e563: Object

v Memory I

v CallData Ib
0:
0x3426582f000
00000000000000000000a

v CallStack Ih
0: 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

» ReturnValue Iy

» Full Storages Changes Ih

The following instructions from the preceding screenshot show the
bytecode for function execution:

e Solidity Locals: This instruction shows the incoming

parameter, data type, and its value.

e Solidity State: This instruction shows the state variables,
their data type, and current value.

e Step detail: This is important for debugging gas usage,
consumption, and remaining gas.

e Call Stack: This instruction shows the interim variables
needed by function code.

e Memory: This instruction shows the local variables used
within the function.

e (Call Data: This function shows the actual payload the client
sends to the contract. The first four bytes refer to the
function identifier and the rest contain 32 bytes for each
incoming parameter.

An important aspect of debugging is to stop the execution at each
line of code of special interest. Breakpoints help do this. Clicking on
any line beside the line number helps in setting up a breakpoint.
Clicking again removes the breakpoint. During the execution of a
function, when it hits this line; the execution is halted, and the
values and execution can be verified from the Debugger tab. The
following screenshot shows the breakpoint:

3 pragma solidity "0.4.9;

4
5+ contract DebuggerSampleContract {

6

7 int counter = 10;

8

9~ function LoopCounter(int _input) public view returns (int) {
10 int returnValue;
i
i for (; _input < counter; _input ++)
13~ {
14 returnValue += _input;
15 }

16 return returnValue;

17 }

1a)

Using Remix, it is also possible to perform Step over back, Step
back, Step into, Step over forward, Jump to the previous
breakpoint, Jump out, and Jump to the next breakpoint. It also
provides the facility to view information using a block number or
transaction hash about a particular block or transaction. It is
possible to provide a transaction number in a block instead of a
transaction hash, as shown in the following screenshot:

Block number Transaction index or hash

4 |

» Transaction

Using events

We saw how to use events in chapter 8, Exceptions, Events, and
Logging. Events can be trapped and can help provide relevant
information about the current execution. Contracts should declare
events and functions should invoke these events at appropriate
locations with information that provides enough context to whoever

is reading these events.

Using a Block Explorer

A Block Explorer is an Ethereum browser. It provides reports and
information about current blocks and transactions in its network.
It's a great place to learn more about existing and past data. It is
available at nttps://etherscan.io/, as shown in the following screenshot:

https://etherscan.io/

L0GH{ - Seqohby Ao Tesh Bl ToenEns e

Th Etherum Bkl

Biersean
Vi

HONE BLOGKCHAN« TORENS v CRARTS WS

Sponsoed L SV s e toprated 001 SKYFT s complt i ECof USK Joi now

VARKET AP OF S 83 BLLON 14 day Bhereum Transaction ity

TRANGACTIONS

UEE T |

NedvrkDifuty #
Pagatadaspdad
T U U U
& Bl A | & Tnsacions Vol
ety e 0 OB TEORIED, i
fivonshses Fn OG5S, T kb,

BlockRewera 306003 e Amount 0 Ether

It shows transactions involving both accounts and contracts.
Clicking on a transaction shows details about it, as shown in the
following screenshot:

€ - C b Seare s fetherscanofty D 78ob2643472c2efbcefebbO 547 abat 1999913 178808681 adaleb 165

Sponsored Link. - Bankera - the bank for the blockehain era has alieady raised 25M EUR in pre</CO and has started ifs ICO,

AT Comments

Transaction Information Toals & Utlitas v

Txtash: OyelT630264 472 2efce Hob0b4TH1aba tF998ad3 117880668 14ada1eb165d
TeReceipt Status; Sucoess

Black Height: SOB5566 (13 block confimations)

TimeStamp: 2 mins ago (Febe10-2018 03:10.01 PM +LTC)
From; (ke840 3d4d508a B 1162eBebincd Hdhdb
To: Oxaf36680917b7609%e580M0TE5telb 1020357
Value: 0.001 Ether (30.86)

(s Limit: 21075

Gas Used By Tun; 21000

(Gas Price: 0.00000001 Ether {10 G}

Actual Tx CostiFee: (00021 Ether (30.18)

Cumulative Gas Used: TOT9455

Nonce: W

By now, you understand the details about transactions stored
within the Ethereum ledger. From the preceding screenshot, let's
take a look at the following few details of the transaction:

e TxHash: This detail refers to transaction hashes

e TxReceipt Status: This detail represents the status of a
transaction, whether successful or pending

e Block Height: This detail shows which block number the
transaction is stored in

e TimeStamp: This detail shows the timestamp for the
transaction

e From: This detail shows who sent the transaction
e To: This detail shows the recipient of the transaction
e Value: This details shows the amount of Ether transferred

e Gas Limit: This detail represents the gas limit specified by
the user

e Gas Used By Txn: This detail shows the amount of gas used
by the transaction

e Gas Price: This detail shows an amount of gas price
determined by the sender

e nonce: This is to determine the count of transactions sent by
the sender

e Actual Tx Cost/Fees: This detail shows total cost of a
transaction, that is, gas used * gas price

Clicking on a block shows information about the block and a list of
transactions that are part of that block. It shows all the details from
a block header, such as block hash, parent hash, miner account,
difficulty level, nonce, and more, as shown in the following

screenshot:

Block #5371088

Overview Comments

Block Information

Height: PE 5371088

TimeStamp: 24 mins ago (Apr-03-2018 04:40:43 AM +UTC)

Transactions: 110 transactions and 9 contract internal transactions in this block

Hash: 0x3d60e58h0b16¢bfbe7092b20002a4f5a378cef020aaar 7aecd8bfdb2b9bab04b

Parent Hash:

Oxddda69eb23a1a4c09d04b972b6ac86423d9d90b04de6960ddba2d5030b4f15d7

Sha3Uncles: 0x1dccdde8dec?5d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347
Mined By: Oxea674fdde714fd979de 3edf0f56aa9716b898ec8 (Ethermine) in 29 secs
Difficulty: 3,148,969,913,227,778

Total Difficulty:

3,420,743,609,603,467,001,970

Size: 17348 bytes

Gas Used: 4,700,847 (58.76%)

Gas Limit: 8,000,029

Nonce: 0xe40a67302004c2ce

Block Reward: 3.080050595373591778 Ether (3 + 0.080050595373591778)

Uncles Reward:

Extra Data:

0

ethermine-eu9 (Hex:0x65746865726d696e652d657539)

The block header has some interesting properties, and some of

them are mentioned here. The Height detail provides the block
number in the ledger, the number of transactions within the block
(110 in this case), and the number of internal transactions (these
are referred to as message calls between contracts), the hash of
current block header (Hash), the hash of the parent block (Parent
Hash), the hash of the root for uncles, the coinbase or etherbase
account that mined the block (Mined By), the difficulty level for the
current block, the cumulative difficulty for all blocks till the current
block, the size of the block, the total gas used by all transactions
within the block, the maximum limit of gas for the block, the
evidence that proof of work has been carried out (Nonce), and the
reward for mining the block.

Summary

This brings us to the end of this chapter and this book. Solidity is a
new programming language that is evolving continuously. Solidity
contracts can be debugged using the Remix editor. Remix provides
a convenient way to author and debug contracts by verifying
variables and code execution at every step. It helps us move forward
and back in code execution. It provides breakpoints to break the
execution of code. There are other ways to debug contracts as well.
These include using Block Explorers and Solidity events. Although
events and Block Explorers provide limited capabilities for
debugging, they are very helpful and facilitate production.

I hope you enjoyed reading this book and sincerely believe that you
are becoming a rock star Solidity developer by now. Stay tuned and
keep learning!

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books
by Packt:

Imran Bashir

Mastering
Blockchain

Packt>

Mastering Blockchain - Second Edition
Imran Bashir

ISBN: 978-1-78883-904-4
e Master the theoretical and technical foundations of the
blockchain technology

e Understand the concept of decentralization, its impact, and
its relationship with blockchain technology

e Master how cryptography is used to secure data - with
practical examples

e Grasp the inner workings of blockchain and the mechanisms
behind bitcoin and alternative cryptocurrencies

e Understand the theoretical foundations of smart contracts

¢ Learn how Ethereum blockchain works and how to develop

https://www.packtpub.com/big-data-and-business-intelligence/mastering-blockchain-second-edition

decentralized applications using Solidity and relevant
development frameworks

e Identify and examine applications of the blockchain
technology - beyond currencies

¢ Investigate alternative blockchain solutions including
Hyperledger, Corda, and many more

e Explore research topics and the future scope of blockchain
technology

Narayan Prusty

Building Blockchain
Projects

Building Blockchain Projects
Narayan Prusty

ISBN: 978-1-78712-214-7

e Walk through the basics of the Blockchain technology

e Implement Blockchain’s technology and its features, and see
what can be achieved using them

e Build DApps using Solidity and Web3.js
e Understand the geth command and cryptography

e Create Ethereum wallets

https://www.packtpub.com/big-data-and-business-intelligence/building-blockchain-projects

e Explore consortium blockchain

Leave a review - let other
readers know what you think

Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the
book from Amazon, please leave us an honest review on this book's
Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and
our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt.
Thank you!

	Title Page
	Copyright and Credits
	Solidity Programming Essentials

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Introduction to Blockchain, Ethereum, and Smart Contracts
	What is a blockchain?
	Why blockchains?
	Cryptography
	Symmetric encryption and decryption
	Asymmetric encryption and decryption
	Hashing
	Digital signatures

	Ether
	Gas
	Blockchain and Ethereum architecture
	How are blocks related to each other?
	How are transactions and blocks related to each other?

	Ethereum nodes
	EVM
	Ethereum mining nodes
	How does mining work?

	Ethereum accounts
	Externally owned accounts
	Contract accounts

	Transactions
	Blocks
	An end-to-end transaction
	What is a contract?
	What is a smart contract?
	How to write smart contracts?

	How are contracts deployed?
	Summary

	Installing Ethereum and Solidity
	Ethereum networks
	Main network
	Test network
	Ropsten
	Rinkeby
	Kovan

	Private network
	Consortium network

	Geth
	Installing Geth on Windows

	Creating a private network
	ganache-cli
	Solidity compiler
	The web3 JavaScript library
	Mist wallet
	MetaMask
	Summary

	Introducing Solidity
	Ethereum Virtual Machine
	Solidity and Solidity files
	Pragma
	Comments
	The import statement
	Contracts

	Structure of a contract
	State variables
	Structure
	Modifiers
	Events
	Enumeration
	Functions

	Data types in Solidity
	Value types
	Passing by value

	Reference types
	Passing by reference

	Storage and memory data locations
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6
	Rule 7
	Rule 8

	Literals
	Integers
	Boolean
	The byte data type
	Arrays
	Fixed arrays
	Dynamic arrays
	Special arrays
	The bytes array
	The String array

	Array properties

	Structure of an array
	Enumerations
	Address
	Mappings
	Summary

	Global Variables and Functions
	The var type variables
	Variables hoisting
	Variable scoping
	Type conversion
	Implicit conversion
	Explicit conversion

	Block and transaction global variables
	Transaction and message global variables
	Difference between tx.origin and msg.sender

	Cryptography global variables
	Address global variables
	Contract global variables
	Summary

	Expressions and Control Structures
	Solidity expressions
	The if decision control
	The while loop
	The for loop
	The do...while loop
	The break statement
	The continue statement
	The return statement
	Summary

	Writing Smart Contracts
	Smart contracts
	Writing a simple contract
	Creating contracts
	Using the new keyword
	Using address of a contract

	Constructors
	Contract composition
	Inheritance
	Single inheritance
	Multi-level inheritance
	Hierarchical inheritance
	Multiple inheritance

	Encapsulation
	Polymorphism
	Function polymorphism
	Contract polymorphism

	Method overriding
	Abstract contracts
	Interfaces
	Summary

	Functions, Modifiers, and Fallbacks
	Function input and output
	Modifiers
	The view, constant, and pure functions
	The address functions
	The send method
	The transfer method
	The call method
	The callcode method
	The delegatecall method

	The fallback function
	Summary

	Exceptions, Events, and Logging
	Error handling
	The require statement
	The assert statement
	The revert statement

	Events and logging
	Summary

	Truffle Basics and Unit Testing
	Application development life cycle management
	Truffle
	Development with Truffle
	Testing with Truffle
	Summary

	Debugging Contracts
	Debugging
	The Remix editor
	Using events

	Using a Block Explorer
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

