

Solidity	Programming	Essentials

	

	

A	beginner's	guide	to	build	smart	contracts	for	Ethereum	and
blockchain

	

	

	

	

	

	

	

	

	

	

Ritesh	Modi

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Solidity	Programming
Essentials
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any
form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.
However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the
author,	nor	Packt	Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged
to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editor:	Merint	Methew
Acquisition	Editor:	Sandeep	Mishra
Content	Development	Editor:	Priyanka	Sawant
Technical	Editor:	Vibhuti	Gawde
Copy	Editor:	Safis	Editing
Project	Coordinator:	Vaidehi	Sawant
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Jason	Monteiro
Production	Coordinator:	Deepika	Naik

First	published:	April	2018

Production	reference:	1180418

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78883-138-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over
5,000	books	and	videos,	as	well	as	industry	leading	tools	to	help
you	plan	your	personal	development	and	advance	your	career.	For
more	information,	please	visit	our	website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with
practical	eBooks	and	Videos	from	over	4,000	industry
professionals

Improve	your	learning	with	Skill	Plans	built	especially	for
you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book
published,	with	PDF	and	ePub	files	available?	You	can	upgrade	to
the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,
you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical
articles,	sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive
discounts	and	offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Ritesh	Modi	is	an	ex	Microsoft	senior	technology	evangelist	and
Microsoft	regional	lead.	He	has	worked	on	Ethereum	and	Solidity,
extensively	helping	and	advising	companies.	Ritesh	is	a	regular
speaker	on	blockchain	and	Solidity	at	conferences	and	local
meetups.	He	is	an	architect,	evangelist,	speaker,	and	a	known	leader
for	his	contributions	toward	blockchain,	data	centers,	Azure	Bots,
cognitive	services,	DevOps,	Artificial	Intelligence,	and	automation.
He	is	the	author	of	five	books.

I	have	personally	grown	into	a	person	who	has	more	patience,	perseverance,	and
tenacity	while	writing	this	book.	I	must	thank	the	people	who	mean	the	world	to	me.	I	am
talking	about	my	mother,	Bimla	Modi,	my	wife,	Sangeeta	Modi,	and	my	daughter,	Avni
Modi.	I	also	thank	the	Packt	team	for	their	support.

About	the	reviewer
Pablo	Ruiz	has	been	involved	in	the	creation	of	dozens	of	tech
products	over	the	past	12	years,	working	with	the	latest,	cutting-
edge	technologies.	In	2008,	he	became	deeply	involved	in	the
creation	of	mobile	games	and	applications;	later	on,	he	participated
in	many	projects	as	an	advisor	or	investor	in	the	digital	space.
During	2015/2016,	he	was	a	director	at	one	of	the	top	venture
capital	firms	in	Latin	America,	where	he	built	their	Fintech
ecosystem	from	the	ground	up.	In	2018,	after	actively	working	on
several	ICOs,	he	joined	Polymath	as	their	VP	of	engineering	to	lead
the	development	of	the	first	Ethereum-based	platform	for	issuing
regulatory-compliant	security	tokens.

What	this	book	covers
Chapter	1,	Introduction	to	Blockchain,	Ethereum,	and	Smart
Contracts,	takes	you	through	the	fundamentals	of	blockchain,	its
terminology	and	jargon,	advantages,	problems	it’s	trying	to	solve,
and	industry	relevance.	It	will	explain	the	important	concepts	and
architecture	in	detail.	This	chapter	will	also	teach	you	about
concepts	specific	to	Ethereum.	In	this	chapter,	details	about	its
concepts	like	externally	owned	accounts,	contract	accounts,	its
currency	in	terms	of	gas	and	Ether	will	be	discussed.	Ethereum	is
heavily	based	on	cryptography	and	you’ll	also	learn	about	hash,
encryption,	and	usage	of	keys	for	creating	transactions	and
accounts.	How	are	transactions	and	accounts	created,	how	gas	is
paid	for	each	transaction,	difference	between	message	calls	and
transactions,	and	storage	of	code	and	state	management	will	be
explained	in	detailed.

Chapter	2,	Installing	Ethereum	and	Solidity,	takes	you	through
creating	a	private	blockchain	using	Ethereum	platform.	It	will
provide	step-by-step	guidance	for	creating	a	private	chain.	Another
important	tool	in	Ethereum	ecosystem	is	ganache-cli.	This	chapter
will	also	show	the	process	of	installing	ganache-cli	and	using	it	for
deploying	Solidity	contracts,	installing	Solidity,	and	using	it	to
compile	Solidity	contracts.	You	will	also	install	Mist,	which	is	a
wallet	and	can	interact	with	private	chain.	Mist	will	be	used	to
create	new	accounts,	deploy	contracts,	and	use	contracts.	Mining	of
transactions	will	also	be	shown	in	this	chapter.	Remix	is	a	great	tool
for	authoring	Solidity	contracts.

Chapter	3,	Introducing	Solidity,	begins	the	Solidity	journey.	In	this
chapter,	you’ll	learn	the	basics	of	Solidity	by	understanding	its
different	versions	and	how	to	use	a	version	using	pragmas.	Another
import	aspect	of	this	chapter	is	to	understand	the	big	picture	of

authoring	smart	contracts.	Smart	contract	layout	will	be	discussed
in	depth	using	important	constructs	like	state	variables,	functions,
constant	function,	events,	modifiers,	fallbacks,	enums,	and	structs.
This	chapter	discusses	and	implements	the	most	important	element
of	any	programming	language—data	types	and	variables.	There	are
data	types	that	are	simple	and	complex,	value	types	and	reference
types,	and	storage	and	memory	types—all	these	types	of	variables
will	also	be	shown	using	examples.		

Chapter	4,	Global	Variables	and	Functions,	provides	implementation
and	usage	details	of	block-	and	transaction-related	global	functions
and	variables	and	address-	and	contract-related	global	functions
and	variables.	These	comes	in	very	handy	in	writing	any	series	of
smart	contract	development.

Chapter	5,	Expressions	and	Control	Structures,	teaches	you	how	to
write	contracts	and	functions	that	will	have	conditional	logic	using
if...else	and	switch	statements.	Looping	is	an	important	part	of	any
language	and	Solidity	provides	while	and	for	loops	for	looping	over
arrays.	Examples	and	implementation	of	looping	will	be	part	of	this
chapter.	Loops	must	break	based	on	certain	conditions	and	should
continue	based	on	other	conditions.

Chapter	6,	Writing	Smart	Contracts,	is	the	core	chapter	for	the	book.
Here,	you	will	start	writing	serious	smart	contracts.	It	will	discuss
the	design	aspects	of	writing	smart	contracts,	defining	and
implementing	a	contract,	and	deploying	and	creating	contracts
using	different	mechanisms	using	the	new	keyword	and	using
known	addresses.	Solidity	provides	rich	object	orientation,	and	this
chapter	will	delve	deep	into	object-oriented	concepts	and
implementation	such	as	inheritance,	multiple	inheritance,	declaring
abstract	classes	and	interfaces,	and	providing	method
implementations	to	abstract	functions	and	interfaces.	

Chapter	7,	Functions,	Modifiers,	and	Fallbacks,	shows	how	to
implement	basic	functions	that	accept	inputs	and	return	outputs,
functions	that	just	output	the	existing	state	without	changing	the

state	and	modifiers.	Modifiers	help	in	organizing	code	better	in
Solidity.	It	helps	in	security	and	reusing	code	within	contracts.
Fallbacks	are	important	constructs	and	are	executed	when	a
function	call	does	not	match	any	of	the	existing	function	signatures.
Fallbacks	are	also	important	for	transferring	Ether	to	contracts.
Both	modifiers	and	fallbacks	will	be	discussed	and	implemented
with	examples	for	easy	understanding.

Chapter	8,	Exceptions,	Events,	and	Logging,	is	important	in	Solidity
from	contract	development	perspective.	Ether	should	be	returned	to
caller	in	case	of	error	and	exception.	Exception	handling	will	be
explained	and	implemented	in	depth	in	this	chapter	using	newer
Solidity	constructs	like	assert,	require,	and	revert.	The	hrow
statement	will	also	be	discussed.	Events	and	logging	help	in
understanding	the	execution	of	contracts	and	functions.	This
chapter	will	show	and	explain	the	implementation	for	both	events
and	logs.

Chapter	9,	Truffle	Basics	and	Unit	Testing,	covers	the	basics	of	truffle,
understanding	its	concepts,	creating	a	project	and	understanding	its
project	structure,	modifying	its	configuration,	and	taking	a	sample
contract	through	entire	life	cycle	of	writing,	testing,	deploying,	and
migrating	a	contract.	Testing	is	as	important	for	contracts	as
writing	a	contract.	Truffle	helps	in	providing	a	framework	to	test;
however,	tests	should	be	written.	This	chapter	will	discuss	the
basics	of	unit	test,	write	unit	test	using	Solidity,	and	execute	those
unit	tests	against	the	smart	contract.	Unit	tests	will	be	executed	by
creating	transaction	and	validating	its	results.	This	chapter	will
show	implementation	details	to	write	and	execute	unit	tests	for	a
sample	contract.

Chapter	10,	Debugging	Contracts,	will	be	show	troubleshooting	and
debugging	using	multiple	tools	like	Remix	and	events.	This	chapter
will	show	how	to	execute	code	line	by	line,	check	state	after	every
line	of	code,	and	change	contract	code	accordingly.

Packt	is	searching	for	authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	auth
ors.packtpub.com	and	apply	today.	We	have	worked	with	thousands	of
developers	and	tech	professionals,	just	like	you,	to	help	them	share
their	insight	with	the	global	tech	community.	You	can	make	a
general	application,	apply	for	a	specific	hot	topic	that	we	are
recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Solidity	Programming	Essentials

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 Introduction	to	Blockchain,	Ethereum,	and	Smart	Contracts

What	is	a	blockchain?

Why	blockchains?

Cryptography

Symmetric	encryption	and	decryption

Asymmetric	encryption	and	decryption

Hashing

Digital	signatures

Ether

Gas

Blockchain	and	Ethereum	architecture

How	are	blocks	related	to	each	other?

How	are	transactions	and	blocks	related	to	each	other?

Ethereum	nodes

EVM

Ethereum	mining	nodes

How	does	mining	work?

Ethereum	accounts

Externally	owned	accounts

Contract	accounts

Transactions

Blocks

An	end-to-end	transaction

What	is	a	contract?

What	is	a	smart	contract?

How	to	write	smart	contracts?

How	are	contracts	deployed?

Summary

2.	 Installing	Ethereum	and	Solidity

Ethereum	networks

Main	network

Test	network

Ropsten

Rinkeby

Kovan

Private	network

Consortium	network

Geth

Installing	Geth	on	Windows

Creating	a	private	network

ganache-cli

Solidity	compiler

The	web3	JavaScript	library

Mist	wallet

MetaMask

Summary

3.	 Introducing	Solidity

Ethereum	Virtual	Machine

Solidity	and	Solidity	files

Pragma

Comments

The	import	statement

Contracts

Structure	of	a	contract

State	variables

Structure

Modifiers

Events

Enumeration

Functions

Data	types	in	Solidity

Value	types

Passing	by	value

Reference	types

Passing	by	reference

Storage	and	memory	data	locations

Rule	1

Rule	2

Rule	3

Rule	4

Rule	5

Rule	6

Rule	7

Rule	8

Literals

Integers

Boolean

The	byte	data	type

Arrays

Fixed	arrays

Dynamic	arrays

Special	arrays

The	bytes	array

The	String	array

Array	properties

Structure	of	an	array

Enumerations

Address

Mappings

Summary

4.	 Global	Variables	and	Functions

The	var	type	variables

Variables	hoisting

Variable	scoping

Type	conversion

Implicit	conversion

Explicit	conversion

Block	and	transaction	global	variables

Transaction	and	message	global	variables

Difference	between	tx.origin	and	msg.sender

Cryptography	global	variables

Address	global	variables

Contract	global	variables

Summary

5.	 Expressions	and	Control	Structures

Solidity	expressions

The	if	decision	control

The	while	loop

The	for	loop

The	do...while	loop

The	break	statement

The	continue	statement

The	return	statement

Summary

6.	 Writing	Smart	Contracts

Smart	contracts

Writing	a	simple	contract

Creating	contracts

Using	the	new	keyword

Using	address	of	a	contract

Constructors

Contract	composition

Inheritance

Single	inheritance

Multi-level	inheritance

Hierarchical	inheritance

Multiple	inheritance

Encapsulation

Polymorphism

Function	polymorphism

Contract	polymorphism

Method	overriding

Abstract	contracts

Interfaces

Summary

7.	 Functions,	Modifiers,	and	Fallbacks

Function	input	and	output

Modifiers

The	view,	constant,	and	pure	functions

The	address	functions

The	send	method

The	transfer	method

The	call	method

The	callcode	method

The	delegatecall	method

The	fallback	function

Summary

8.	 Exceptions,	Events,	and	Logging

Error	handling

The	require	statement

The	assert	statement

The	revert	statement

Events	and	logging

Summary

9.	 Truffle	Basics	and	Unit	Testing

Application	development	life	cycle	management

Truffle

Development	with	Truffle

Testing	with	Truffle

Summary

10.	 Debugging	Contracts

Debugging

The	Remix	editor

Using	events

Using	a	Block	Explorer

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
I	am	not	sure	the	last	time	I	heard	so	much	of	a	discussion	about	a
technology	across	governments,	organizations,	communities,	and
individuals.	Blockchain	is	a	technology	that	is	being	discussed	and
debated	at	length	across	the	world	and	organizations,	and	without	a
reason.	Blockchain	is	not	just	a	technology	that	has	limited	effect	on
our	life.	It	has	and	will	have	widespread	ramifications	in	our	lives.
The	day	is	not	far	when	blockchain	will	touch	almost	each	aspect	of
our	activities—whether	paying	bills,	transactions	with	any
organizations,	getting	salary,	identity,	educational	results,	activities,
and	so	on.	This	is	just	the	beginning,	and	we	have	just	started	to
understand	the	meaning	of	decentralization	and	its	impact.

I	have	been	working	on	blockchain	for	quite	some	time	now	and
have	been	a	crypto-investor	for	long.	I	am	a	technologist	and	am
completely	fascinated	by	Bitcoin	because	of	the	architectural	marvel
it	is.	I	have	never	come	across	such	superior	thought	process	and
architecture	that	actually	solves	not	only	economic	and	social
problems	but	solves	some	technically	unsolved	problems	such	as
Byzantine	general	problems	and	fault	tolerance.	It	solves	the
problem	of	distributed	computing	at	large.

Ethereum	is	built	in	an	almost	similar	fashion,	and	I	was	in	awe
when	I	first	heard	and	experienced	smart	contracts.	Smart	contracts
are	one	of	the	greatest	innovation	to	deploy	decentralized
applications	on	blockchain	and	extend	it	easily	with	custom	logic,
policies,	and	rules.

I	have	thoroughly	enjoyed	authoring	this	book	and	sincerely	hope
that	you	would	also	enjoy	reading	and	implementing	Solidity.	I	have
brought	in	a	lot	of	my	Solidity	experience	and	try	to	make	the
maximum	out	of	it.	I	hope	this	book	makes	you	a	better	Solidity

developer	and	a	superior	programmer.

Do	let	me	know	if	there	is	anything	I	can	do	to	make	your
experience	better	with	this	book.	I	am	all	ears,	and	happy	learning!

Who	this	book	is	for
To	make	usage	of	the	content	of	this	book,	basic	prior	knowledge	of
computing	and	general	programming	concepts	is	needed.	If	you	feel
you	don't	have	that	knowledge,	it	is	always	possible	to	catch	up	the
basic	requirements	with	a	fast	reading	on	many	beginners'	books	on
programming.	This	book	is	essentially	intended	for	blockchain
architects,	developers,	consultants,	and	IT	engineers	who	are	using
blockchain	to	provide	advanced	services	to	end	customers	and
employers.	If	you	are	also	willing	to	write	smart	contracts	solution
on	Ethereum,	then	this	book	is	ideal	for	you.	If	you	already	have
some	experience	with	JavaScript,	this	book	can	help	you	speed	up
with	it	in	a	fast-paced	way.

To	get	the	most	out	of	this
book
This	book	assumes	a	basic	level	knowledge	of	programming.	It	is
ideal	to	have	some	background	on	any	scripting	language.	All	you
need	is	an	internet	connectivity	and	a	browser	for	using	a	majority
of	this	book.	There	are	sections	that	will	need	creating	a	machine	to
deploy	blockchain	specific	tools	and	utilities.	This	machine	can	be
physical	or	virtual,	on	cloud	or	on-premise.

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your
account	at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you
can	visit	www.packtpub.com/support	and	register	to	have	the	files	emailed
directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.

2.	 Select	the	SUPPORT	tab.

3.	 Click	on	Code	Downloads	&	Errata.

4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or
extract	the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://githu
b.com/PacktPublishing/SolidityProgrammingEssentials.	In	case	there's	an	update
to	the	code,	it	will	be	updated	on	the	existing	GitHub	repository.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user
input,	and	Twitter	handles.	Here	is	an	example:	"A	genesis.json	file	is
required	to	create	this	first	block."

A	block	of	code	is	set	as	follows:

{		

"config":	{

"chainId":	15,

"homesteadBlock":	0,

"eip155Block":	0,

"eip158Block":	0

},

"nonce":	"0x0000000000000042",

"mixhash":	

"0x00",

"difficulty":	"0x200",

"alloc":	{},

"coinbase":	"0x00",

"timestamp":	"0x00",

"parentHash":	

"0x00",

"gasLimit":	"0xffffffff",

"alloc":	{

}

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code
block,	the	relevant	lines	or	items	are	set	in	bold:

[default]

exten	=>	s,1,Dial(Zap/1|30)

exten	=>	s,2,Voicemail(u100)

exten	=>	s,102,Voicemail(b100)

exten	=>	i,1,Voicemail(s0)

Any	command-line	input	or	output	is	written	as	follows:

npm	install	-g	ganache-cli

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you
see	onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear
in	the	text	like	this.	Here	is	an	example:	"For	sending	Ether	from
one	account	to	another,	select	an	account	and	click	on
the	Send	button."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book
title	in	the	subject	of	your	message.	If	you	have	questions	about	any
aspect	of	this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy
of	our	content,	mistakes	do	happen.	If	you	have	found	a	mistake	in
this	book,	we	would	be	grateful	if	you	would	report	this	to	us.	Please
visit	www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any
form	on	the	Internet,	we	would	be	grateful	if	you	would	provide	us
with	the	location	address	or	website	name.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a
topic	that	you	have	expertise	in	and	you	are	interested	in	either
writing	or	contributing	to	a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why
not	leave	a	review	on	the	site	that	you	purchased	it	from?	Potential
readers	can	then	see	and	use	your	unbiased	opinion	to	make
purchase	decisions,	we	at	Packt	can	understand	what	you	think
about	our	products,	and	our	authors	can	see	your	feedback	on	their
book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Introduction	to	Blockchain,
Ethereum,	and	Smart	Contracts
This	decade	has	already	seen	the	extraordinary	evolution	of	the
technology	and	computing	ecosystem.	Technological	innovation
and	its	impact	has	been	noticeable	across	the	spectrum,	from	the
Internet	of	Things	(IoT),	to	Artificial	Intelligence	(AI),	to
blockchains.	Each	of	them	has	had	a	disruptive	force	within
multiple	industries	and	blockchains	are	one	of	the	most	disruptive
technologies	today.	So	much	so	that	blockchains	have	the	potential
to	change	almost	every	industry.	Blockchains	are	revolutionizing
almost	all	industries	and	domains	while	bringing	forward	newer
business	models.	Blockchains	are	not	a	new	technology;	however,
they	have	gained	momentum	over	the	last	couple	of	years.	It	is	a	big
leap	forward	in	terms	of	thinking	about	decentralized	and
distributed	applications.	It	is	about	the	current	architectural
landscape	and	strategies	for	moving	toward	immutable	distributed
databases.

In	this	first	chapter,	you	will	quickly	learn	and	understand	the	basic
and	foundational	concepts	of	blockchains	and	Ethereum.	We	will
also	discuss	some	of	the	important	concepts	that	makes	blockchains
and	Ethereum	work.	Also,	we	will	touch	briefly	on	the	topic	of	smart
contracts	and	how	to	author	them	using	Solidity.

It	is	to	be	noted	that	this	chapter	briefly	explains	important
blockchain	concepts.	It	does	not	explain	all	concepts	in	detail	and
would	require	a	complete	book	only	for	that	purpose.	Since
Ethereum	is	an	implementation	of	a	blockchain,	both	the	words
have	been	used	interchangeably	in	this	book.

This	chapter	will	focus	on	introducing	the	following	topics:

What	is	a	blockchain	and	why	is	it	used?

Cryptography

Ether	and	gas

Blockchain	and	Ethereum	architecture

Nodes

Mining

Understanding	accounts,	transactions,	and	blocks

Smart	contracts

What	is	a	blockchain?
A	blockchain	is	essentially	a	decentralized	distributed	database	or	a
ledger,	as	follows:

Decentralization:	In	simple	terms,	it	means	that	the

application	or	service	continues	to	be	available	and	usable

even	if	a	server	or	a	group	of	servers	on	a	network	crashes	or

is	not	available.	The	service	or	application	is	deployed	on	a

network	in	a	way	that	no	server	has	absolute	control	over

data	and	execution,	rather	each	server	has	a	current	copy	of

data	and	execution	logic.

Distributed:		This	means	that	any	server	or	node	on	a

network	is	connected	to	every	other	node	on	the	network.

Rather	than	having	one-to-one	or	one-to-many	connectivity

between	servers,	servers	have	many-to-many	connections

with	other	servers.

Database:	This	refers	to	the	location	for	storing	durable

data	that	can	be	accessed	at	any	point	in	time.	A	database

allows	storage	and	retrieval	of	data	as	functionality	and	also

provides	management	functionalities	to	manage	data

efficiently,	such	as	export,	import,	backup,	and	restoration.

Ledger:	This	is	an	accounting	term.	Think	of	it	as

specialized	storage	and	retrieval	of	data.	Think	of	ledgers

that	are	available	to	banks.	For	example,	when	a	transaction

is	executed	with	a	bank—say,	Tom	deposits	100	dollars	in

his	account,	the	bank	enters	this	information	in	a	ledger	as	a

credit.	At	some	point	in	the	future	Tom	withdraws	25

dollars.	The	bank	does	not	modify	the	existing	entry	and

stored	data	from	100	to	75.	Instead	it	adds	another	entry	in

the	same	ledger	as	a	debit	of	25	dollars.	It	means	a	ledger	is

a	specialized	database	that	does	not	allow	modification	of

existing	data.	It	allows	you	to	create	and	append	a	new

transaction	to	modify	the	current	balance	in	the	ledger.	The

blockchain	is	a	database	that	has	the	same	characteristics	of

a	ledger.	It	allows	newer	transactions	to	be	stored	in	an

append-only	pattern	without	any	scope	to	modify	past

transactions.	It	is	important	here	to	understand	that	existing

data	can	be	modified	by	using	a	new	transaction,	but	past

transactions	cannot	be	modified.	A	balance	of	100	dollars

can	be	modified	at	any	time	by	executing	a	new	debit	or

credit	transaction,	but	previous	transactions	cannot	be

modified.	Take	a	look	at	the	following	diagram	for	a	better

understanding:

Blockchain	means	a	chain	of	blocks.	Blockchain	means	having
multiple	blocks	chained	together,	with	each	block	storing
transactions	in	a	way	where	it	is	not	possible	to	change	these
transactions.	We	will	discuss	this	in	later	sections	when	we	talk
about	the	storage	of	transactions	and	how	immutability	is	achieved
in	a	blockchain.

Because	of	being	decentralized	and	distributed,	blockchain
solutions	are	stable,	robust,	durable,	and	highly	available.	There	is
no	single	point	of	failure.	No	single	node	or	server	is	the	owner	of
the	data	and	solution,	and	everyone	participates	as	a	stakeholder.

Not	being	able	to	change	and	modify	past	transactions	makes
blockchain	solutions	highly	trustworthy,	transparent,	and
incorruptible.

Ethereum	allows	extending	its	functionality	with	the	help	of	smart
contracts.	Smart	contracts	will	be	addressed	in	detail	throughout
this	book.

Why	blockchains?
The	main	objective	of	Ethereum	is	to	accept	transactions	from
accounts,	update	their	state,	and	maintain	this	state	as	current	till
another	transaction	updates	it	again.	The	whole	process	of
accepting,	executing,	and	writing	transactions	can	be	divided	into
two	phases	in	Ethereum.	There	is	a	decoupling	between	when	a
transaction	is	accepted	by	Ethereum	and	when	the	transaction	is
executed	and	written	to	the	ledger.	This	decoupling	is	quite
important	for	decentralization	and	distributed	architecture	to	work
as	expected.

Blockchain	helps	primarily	in	the	following	three	different	ways:

Trust:	Blockchain	helps	in	creating	applications	that	are

decentralized	and	collectively	owned	by	multiple	people.

Nobody	within	this	group	has	the	power	to	change	or	delete

previous	transactions.	Even	if	someone	tries	to	do	so,	it	will

not	be	accepted	by	other	stakeholders.

Autonomy:	There	is	no	single	owner	for	blockchain-based

applications.	No	one	controls	the	blockchain,	but	everyone

participates	in	its	activities.	This	helps	in	creating	solutions

that	cannot	be	manipulated	or	induce	corruption.

Intermediaries:	Blockchain-based	applications	can	help

remove	the	intermediaries	from	existing	processes.

Generally	there	is	a	central	body,	such	as	vehicle

registration,	license	issuing,	and	so	on,	that	acts	as	registrar

for	registering	vehicles	as	well	as	issuing	driver	licenses.

Without	blockchain-based	systems,	there	is	no	central	body

and	if	a	license	is	issued	or	vehicle	is	registered	after	a

blockchain	mining	process,	that	will	remain	a	fact	for	an

epoch	time-period	without	the	need	of	any	central	authority

vouching	for	it.

Blockchain	is	heavily	dependent	on	cryptography	technologies	as
we	discuss	in	the	following	section.

Cryptography
Cryptography	is	the	science	of	converting	plain	simple	text	into
secret,	hidden,	meaningful	text,	and	vice-versa.	It	also	helps	in
transmitting	and	storing	data	that	cannot	be	easily	deciphered
using	owned	keys.

There	are	the	following	two	types	of	cryptography	in	computing:

Symmetric	

Asymmetric	

Symmetric	encryption	and
decryption
Symmetric	cryptography	refers	to	the	process	of	using	a	single
key	for	both	encryption	and	decryption.	It	means	the	same	key
should	be	available	to	multiple	people	if	they	want	to	exchange
messages	using	this	form	of	cryptography.

Asymmetric	encryption	and
decryption
Asymmetric	cryptography	refers	to	the	process	of	using	two
keys	for	encryption	and	decryption.	Any	key	can	be	used	for
encryption	and	decryption.	Message	encryption	with	a	public	key
can	be	decrypted	using	a	private	key	and	messages	encrypted	by	a
private	key	can	be	decrypted	using	a	public	key.	Let's	understand
this	with	the	help	of	an	example.	Tom	uses	Alice's	public	key	to
encrypt	messages	and	sends	it	to	Alice.	Alice	can	use	her	private	key
to	decrypt	the	message	and	extract	contents	out	of	it.	Messages
encrypted	with	Alice's	public	key	can	only	be	decrypted	by	Alice	as
only	she	holds	her	private	key	and	no	one	else.	This	is	the	general
use	case	of	asymmetric	keys.	There	is	another	use	which	we	will	see
while	discussing	digital	signatures.

Hashing
Hashing	is	the	process	of	transforming	any	input	data	into	fixed
length	random	character	data,	and	it	is	not	possible	to	regenerate	or
identify	the	original	data	from	the	resultant	string	data.	Hashes	are
also	known	as	fingerprint	of	input	data.	It	is	next	to	impossible	to
derive	input	data	based	on	its	hash	value.	Hashing	ensures	that
even	a	slight	change	in	input	data	will	completely	change	the	output
data,	and	no	one	can	ascertain	the	change	in	the	original	data.
Another	important	property	of	hashing	is	that	no	matter	the	size	of
input	string	data,	the	length	of	its	output	is	always	fixed.	For
example,	using	the	SHA256	hashing	algorithm	and	function	with
any	length	of	input	will	always	generate	256	bit	output	data.	This
can	especially	become	useful	when	large	amounts	of	data	can	be
stored	as	256	bit	output	data.	Ethereum	uses	the	hashing	technique
quite	extensively.	It	hashes	every	transaction,	hashes	the	hash	of
two	transactions	at	a	time,	and	ultimately	generates	a	single	root
transaction	hash	for	every	transaction	within	a	block.

Another	important	property	of	hashing	is	that	it	is	not
mathematically	feasible	to	identify	two	different	input	strings	that
will	output	the	same	hash.	Similarly,	it	is	not	possible	to
computationally	and	mathematically	find	the	input	from	the	hash
itself.

Ethereum	used	Keccak256	as	its	hashing	algorithm.

The	following	screenshot	shows	an	example	of	hashing.	The	input
Ritesh	Modi	generates	a	hash,	as	shown	in	the	following	screenshot:

Even	a	small	modification	to	input	generates	a	completely	different
hash,	as	shown	in	the	following	screenshot:

Digital	signatures
Earlier,	we	discussed	cryptography	using	asymmetric	keys.	One	of
the	important	cases	for	using	asymmetric	keys	is	in	the	creation	and
verification	of	a	digital	signature.	Digital	signatures	are	very	similar
to	a	signature	done	by	an	individual	on	a	piece	of	paper.	Similar	to	a
paper	signature,	a	digital	signature	helps	in	identifying	an
individual.	It	also	helps	in	ensuring	that	messages	are	not	tampered
with	in	transit.	Let's	understand	digital	signatures	with	the	help	of
an	example.

Alice	wants	to	send	a	message	to	Tom.	How	can	Tom	identify	and
ensure	that	the	message	has	come	from	Alice	only	and	that	the
message	has	not	been	changed	or	tampered	with	in	transit?	Instead
of	sending	a	raw	message/transaction,	Alice	creates	a	hash	of	the
entire	payload	and	encrypts	the	hash	with	her	private	key.	She
appends	the	resultant	digital	signature	to	the	hash	and	transmits	it
to	Tom.	When	the	transaction	reaches	Tom,	he	extracts	the	digital
signature	and	decrypts	it	using	Alice's	public	key	to	find	the	original
hash.	He	also	extracts	the	original	hash	from	the	rest	of	the	message
and	compares	both	the	hashes.	If	the	hashes	match,	it	means	that	it
actually	originated	from	Alice	and	that	it	has	not	been	tampered
with.

Digital	signatures	are	used	to	sign	transaction	data	by	the	owner	of
the	asset	or	cryptocurrency,	such	as	Ether.

Ether
Ether	is	the	currency	of	Ethereum.	Every	activity	on	Ethereum	that
modifies	its	state	costs	Ether	as	a	fee,	and	miners	who	are
successful	in	generating	and	writing	a	block	in	a	chain	are	also
rewarded	Ether.	Ether	can	easily	be	converted	to	dollars	or	other
traditional	currencies	through	cryptoexchanges.

Ethereum	has	a	metric	system	of	denominations	used	as	units	of
Ether.	The	smallest	denomination	or	base	unit	of	Ether	is	called
wei.	The	following	is	a	list	of	the	named	denominations	and	their
value	in	wei	which	is	available	at	https://github.com/ethereum/web3.js/blob/0
.15.0/lib/utils/utils.js#L40:

var	unitMap	=	{

			'wei'	:	'1'

			'kwei':	'1000',

			'ada':	'1000',

			'femtoether':	'1000',

			'mwei':	'1000000',

			'babbage':	'1000000',

			'picoether':	'1000000',

			'gwei':	'1000000000',

			'shannon':	'1000000000',

			'nanoether':	'1000000000',

			'nano':	'1000000000',

			'szabo':	'1000000000000',

			'microether':	'1000000000000',

			'micro':	'1000000000000',

			'finney':	'1000000000000000',

			'milliether':	'1000000000000000',

			'milli':	'1000000000000000',

			'ether':	'1000000000000000000',

			'kether':	'1000000000000000000000',

			'grand':	'1000000000000000000000',

			'einstein':	'1000000000000000000000',

			'mether':	'1000000000000000000000000',

			'gether':	'1000000000000000000000000000',

			'tether':	'1000000000000000000000000000000'

https://github.com/ethereum/web3.js/blob/0.15.0/lib/utils/utils.js#L40

};

Gas
In	the	previous	section,	it	was	mentioned	that	fees	are	paid	using
Ether	for	any	execution	that	changes	state	in	Ethereum.	Ether	is
traded	on	public	exchanges	and	its	price	fluctuates	daily.	If	Ether	is
used	for	paying	fees,	then	the	cost	of	using	the	same	service	could
be	very	high	on	certain	days	and	low	on	other	days.	People	will	wait
for	the	price	of	Ether	to	fall	to	execute	their	transactions.	This	is	not
ideal	for	a	platform	such	as	Ethereum.	Gas	helps	in	alleviating	this
problem.	Gas	is	the	internal	currency	of	Ethereum.	The	execution
and	resource	utilization	cost	is	predetermined	in	Ethereum	in	terms
of	gas	units.	This	is	also	known	as	gas	cost.	There	is	also	gas	price
that	can	be	adjusted	to	a	lower	price	when	the	price	of	Ether
increases	and	a	higher	price	when	the	price	of	Ether	decreases.	For
example,	to	invoke	a	function	in	a	contract	that	modifies	a	string
will	cost	gas,	which	is	predetermined,	and	users	should	pay	in	terms
of	gas	to	ensure	smooth	execution	of	this	transaction.

Blockchain	and	Ethereum
architecture
Blockchain	is	an	architecture	comprising	multiple	components	and
what	makes	blockchain	unique	is	the	way	these	components
function	and	interact	with	each	other.	Some	of	the	important
Ethereum	components	are	Ethereum	Virtual	Machine	(EVM),
miner,	block,	transaction,	consensus	algorithm,	account,	smart
contract,	mining,	Ether,	and	gas.	We	are	going	to	discuss	each	of
these	components	in	this	chapter.

A	blockchain	network	consists	of	multiple	nodes	belonging	to
miners	and	some	nodes	that	do	not	mine	but	help	in	execution	of
smart	contracts	and	transactions.	These	are	known	as	EVMs.	Each
node	is	connected	to	another	node	on	the	network.	These	nodes	use
peer-to-peer	protocol	to	talk	to	each	other.	They,	by	default,	use
port	30303	to	talk	among	themselves.

Each	miner	maintains	an	instance	of	ledger.	A	ledger	contains	all
blocks	in	the	chain.	With	multiple	miners	it	is	quite	possible	that
each	miner's	ledger	instance	might	have	different	blocks	to	another.
The	miners	synchronize	their	blocks	on	an	on-going	basis	to	ensure
that	every	miner's	ledger	instance	is	the	same	as	the	other.

Details	about	ledgers,	blocks,	and	transactions	are	discussed	in
detail	in	subsequent	sections	in	this	chapter.

The	EVM	also	hosts	smart	contracts.	Smart	contracts	help	in
extending	Ethereum	by	writing	custom	business	functionality	into
it.	These	smart	contracts	can	be	executed	as	part	of	a	transaction
and	it	follows	the	process	of	mining	as	discussed	earlier.

A	person	having	an	account	on	a	network	can	send	a	message	for
transfer	of	Ether	from	their	account	to	another	or	can	send	a
message	to	invoke	a	function	within	a	contract.	Ethereum	does	not
distinguish	them	as	far	as	transactions	are	considered.	The
transaction	must	be	digitally	signed	with	an	account	holder's
private	key.	This	is	to	ensure	that	the	identity	of	the	sender	can	be
established	while	verifying	the	transaction	and	changing	the
balances	of	multiple	accounts.	Let's	take	a	look	at	the	components
of	Ethereum	in	the	following	diagram:

How	are	blocks	related	to	each
other?
In	blockchain	and	Ethereum	every	block	is	related	to	another	block.
There	is	a	parent-child	relationship	between	two	blocks.	There	can
be	only	one	child	to	a	parent	and	a	child	can	have	a	single	parent.
This	helps	in	forming	a	chain	in	blockchain.	Blocks	are	explained	in
a	later	section	in	this	chapter.	In	the	following	diagram,	three
blocks	are	shown—Block	1,	Block	2,	and	Block	3.	Block	1	is	the
parent	of	Block	2	and	Block	2	is	the	parent	of	Block	3.	The
relationship	is	established	by	storing	the	parent	block's	hash	in	a
child's	block	header.	Block	2	stores	the	hash	of	Block	1	in	its
header	and	Block	3	stored	the	hash	of	Block	2	in	its	header.	So,
the	question	arises—who	is	the	parent	of	the	first	block?	Ethereum
has	a	concept	of	the	genesis	block	also	known	as	first	block.
This	block	is	created	automatically	when	the	chain	is	first	initiated.
You	can	say	that	a	chain	is	initiated	with	the	first	block	known	as
the	Genesis	Block	and	the	formation	of	this	block	is	driven
through	the	genesis.json	file.	Let's	take	a	look	at	the	following
diagram:

The	following	chapter	will	show	how	to	use	the	genesis.json	file	to
create	the	first	block	while	initializing	the	blockchain.

How	are	transactions	and
blocks	related	to	each	other?
Now	that	we	know	that	blocks	are	related	to	each	other,	you	will	be
interested	in	knowing	how	transactions	are	related	to	blocks.
Ethereum	stores	transactions	within	blocks.	Each	block	has	an
upper	gas	limit	and	each	transaction	needs	a	certain	amount	of	gas
to	be	consumed	as	part	of	its	execution.	The	cumulative	gas	from	all
transactions	that	are	not	yet	written	in	a	ledger	cannot	surpass	the
block	gas	limit.	This	ensures	that	all	transactions	do	not	get	stored
within	a	single	block.	As	soon	as	the	gas	limit	is	reached,	other
transactions	are	removed	from	the	block	and	mining	begins
thereafter.

The	transactions	are	hashed	and	stored	in	the	block.	The	hashes	of
two	transactions	are	taken	and	hashed	further	to	generate	another
hash.	This	process	eventually	provides	a	single	hash	from	all
transactions	stored	within	the	block.	This	hash	is	known	as
the	transaction	Merkle	root	hash	and	is	stored	in	a	block's
header.	A	change	in	any	transaction	will	result	in	a	change	in	its
hash	and,	eventually,	a	change	in	the	root	transaction	hash.	It	will
have	a	cumulative	effect	because	the	hash	of	the	block	will	change,
and	the	child	block	has	to	change	its	hash	because	it	stores	its
parent	hash.	This	helps	in	making	transactions	immutable.	This	is
also	shown	in	the	following	diagram:

Ethereum	nodes
Nodes	represent	the	computers	that	are	connected	using	a	peer-to-
peer	protocol	to	form	an	Ethereum	network.

There	are	the	following	two	types	of	nodes	in	Ethereum:

EVM	

Mining	nodes

It	is	to	be	noted	that	this	distinction	is	made	to	clarify	concepts	of
Ethereum.	In	most	scenarios,	there	is	no	dedicated	EVM.	Instead,
all	nodes	act	as	miners	as	well	as	EVM	nodes.

EVM
Think	of	EVM	as	the	execution	runtime	for	an	Ethereum	network.
EVMs	are	primarily	responsible	for	providing	a	runtime	that	can
execute	code	written	in	smart	contracts.	It	can	access	accounts,
both	contract	and	externally	owned,	and	its	own	storage	data.	It
does	not	have	access	to	the	overall	ledger	but	does	have	limited
information	about	the	current	transaction.

EVMs	are	the	execution	components	in	Ethereum.	The	purpose	of
an	EVM	is	to	execute	the	code	in	a	smart	contract	line	by	line.
However,	when	a	transaction	is	submitted,	the	transaction	is	not
executed	immediately.	Instead	it	is	pooled	in	a	transaction	pool.
These	transactions	are	not	yet	written	to	the	Ethereum	ledger.

Ethereum	mining	nodes
A	miner	is	responsible	for	writing	transactions	to	the	Ethereum
chain.	A	miner's	job	is	very	similar	to	that	of	an	accountant.	As	an
accountant	is	responsible	for	writing	and	maintaining	the	ledger;
similarly,	a	miner	is	solely	responsible	for	writing	a	transaction	to
an	Ethereum	ledger.	A	miner	is	interested	in	writing	transactions	to
a	ledger	because	of	the	reward	associated	with	it.	Miners	get	two
types	of	reward—a	reward	for	writing	a	block	to	the	chain	and
cumulative	gas	fees	from	all	transactions	in	the	block.	There	are
generally	many	miners	available	within	a	blockchain	network	each
trying	and	competing	to	write	transactions.	However,	only	one
miner	can	write	the	block	to	the	ledger	and	the	rest	will	not	be	able
to	write	the	current	block.

The	miner	responsible	for	writing	the	block	is	determined	by	way	of
a	puzzle.	The	challenge	is	given	to	every	miner	and	they	try	to	solve
the	puzzle	using	their	compute	power.	The	miner	who	solves	the
puzzle	first	writes	the	block	containing	transactions	to	his	own
ledger	and	sends	the	block	and	nonce	value	to	other	miners	for
verification.	Once	verified	and	accepted,	the	new	block	is	written	to
all	ledgers	belonging	to	miners.	In	this	process,	the	winning	miner
also	receives	5	Ether	as	reward.	Every	mining	node	maintains	its
own	instance	of	the	Ethereum	ledger	and	the	ledger	is	ultimately
the	same	across	all	miners.	It	is	the	miner's	job	to	ensure	that	their
ledger	is	updated	with	the	latest	blocks.	Following	are	the	three
important	functions	performed	by	miners	or	mining	nodes:

Mine	or	create	a	new	block	with	a	transaction	and	write	the

same	to	the	Ethereum	ledger

Advertise	and	send	a	newly	mined	block	to	other	miners

Accept	new	blocks	mined	by	other	miners	and	keep	its	own

ledger	instance	up-to-date

Mining	nodes	refer	to	the	nodes	that	belong	to	miners.	These	nodes
are	part	of	the	same	network	where	the	EVM	is	hosted.	At	some
point	in	time,	the	miners	will	create	a	new	block,	collect	all
transactions	from	the	transaction	pool,	and	add	them	to	the	newly
created	block.	Finally,	this	block	is	added	to	the	chain.	There	are
additional	concepts	such	as	consensus	and	solving	of	target	puzzle
before	writing	the	block	that	will	be	explained	in	the	following
section.

How	does	mining	work?
The	process	of	mining	explained	here	is	applicable	to	every	miner
on	the	network	and	every	miner	keeps	executing	the	tasks
mentioned	here	regularly.

Miners	are	always	looking	forward	to	mining	new	blocks,	and	are
also	listening	actively	to	receive	new	blocks	from	other	miners.	They
are	also	listening	for	new	transactions	to	store	in	the	transaction
pool.	Miners	also	spread	the	incoming	transactions	to	other
connected	nodes	after	validation.	As	mentioned	before,	at	some
point,	the	miner	collects	all	transactions	from	the	transaction	pool.
This	activity	is	done	by	all	miners.

The	miner	constructs	a	new	block	and	adds	all	transactions	to	it.
Before	adding	these	transactions,	it	will	check	if	any	of	the
transactions	are	not	already	written	in	a	block	that	it	might	receive
from	other	miners.	If	so,	it	will	discard	those	transactions.

The	miner	will	add	their	own	coinbase	transaction	for	getting
rewards	for	mining	the	block.

The	next	task	for	a	miner	is	to	generate	the	block	header	and
perform	the	following	tasks:

1.	 The	miner	takes	hashes	of	two	transactions	at	a	time	to

generate	a	new	hash	till	he	gets	a	single	hash	from	all

transactions.	The	hash	is	referred	to	as	a	root	transaction

hash	or	Merkle	root	transaction	hash.	This	hash	is	added	to

the	block	header.

2.	 The	miner	also	identifies	the	hash	of	the	previous	block.	The

previous	block	will	become	parent	to	the	current	block	and

its	hash	will	also	be	added	to	the	block	header.

3.	 The	miner	calculates	the	state	and	receipts	of	transaction

root	hashes	and	adds	them	to	the	block	header.

4.	 A	nonce	and	timestamp	is	also	added	to	the	block	header.

5.	 A	block	hash	consisting	of	both	block	header	and	body	is

generated.

6.	 The	mining	process	starts	where	the	miner	keeps	changing

the	nonce	value	and	tries	to	find	a	hash	that	will	satisfy	as	an

answer	to	the	given	puzzle.	It	is	to	be	kept	in	mind	that

everything	mentioned	here	is	executed	by	every	miner	in	the

network.

7.	 Eventually,	one	of	the	miners	will	be	able	to	solve	the	puzzle

and	advertise	the	same	to	other	miners	in	the	network.	The

other	miners	will	verify	the	answer	and,	if	found	correct,	will

further	verify	every	transaction,	accept	the	block,	and

append	the	same	to	their	ledger	instance.

This	entire	process	is	also	known	as	Proof	of	Work	(PoW)
wherein	a	miner	provides	proof	that	it	is	has	worked	on	computing
the	final	answer	that	could	satisfy	as	solution	to	the	puzzle.	There
are	other	algorithms	such	as	Proof	of	Stake	(PoS)	and	Proof	of
Authority	(PoA),	but	they	are	not	used	or	discussed	in	this	book.

The	header	block	and	its	content	is	shown	in	the	following	diagram:

Ethereum	accounts
Accounts	are	the	main	building	blocks	for	the	Ethereum	ecosystem.
It	is	an	interaction	between	accounts	that	Ethereum	wants	to	store
as	transactions	in	its	ledger.	There	are	two	types	of	accounts
available	in	Ethereum—externally	owned	accounts	and	contract
accounts.	Each	account,	by	default,	has	a	property	named	balance
that	helps	in	querying	the	current	balance	of	Ether.

Externally	owned	accounts
Externally	owned	accounts	are	accounts	that	are	owned	by	people
on	Ethereum.	Accounts	are	not	referred	to	by	name	in	Ethereum.
When	an	externally	owned	account	is	created	on	Ethereum	by	an
individual,	a	public/private	key	is	generated.	The	private	key	is	kept
safe	with	the	individual	while	the	public	key	becomes	the	identity	of
this	externally	owned	account.	This	public	key	is	generally	of	256
characters,	however,	Ethereum	uses	the	first	160	characters	to
represent	the	identity	of	an	account.

If	Bob,	for	example,	creates	an	account	on	an	Ethereum	network—
whether	private	or	public,	he	will	have	his	private	key	available	to
himself	while	the	first	160	characters	of	his	public	key	will	become
his	identity.	Other	accounts	on	the	network	can	then	send	Ether	or
other	cryptocurrencies	based	on	Ether	to	this	account.

An	account	on	Ethereum	looks	like	the	one	shown	in	the	following
screenshot:

An	externally	owned	account	can	hold	Ether	in	its	balance	and	does
not	have	any	code	associated	with	it.	It	can	execute	transactions
with	other	externally	owned	accounts	and	it	can	also	execute
transactions	by	invoking	functions	within	contracts.

Contract	accounts
Contract	accounts	are	very	similar	to	externally	owned	accounts.
They	are	identified	using	their	public	address.	They	do	not	have	a
private	key.	They	can	hold	Ether	similar	to	externally	owned
accounts;	however,	they	contain	code—code	for	smart	contracts
consisting	of	functions	and	state	variables.

Transactions
A	transaction	is	an	agreement	between	a	buyer	and	a	seller,	a
supplier	and	a	consumer,	or	a	provider	and	a	consumer	that	there
will	be	an	exchange	of	assets,	products,	or	services	for	currency,
cryptocurrency,	or	some	other	asset,	either	in	the	present	or	in	the
future.	Ethereum	helps	in	executing	the	transaction.	Following	are
the	three	types	of	transactions	that	can	be	executed	in	Ethereum:

Transfer	of	Ether	from	one	account	to	another:	The

accounts	can	be	externally	owned	accounts	or	contract

accounts.	Following	are	the	possible	cases:

An	externally	owned	account	sending	Ether	to

another	externally	owned	account	in	a	transaction

An	externally	owned	account	sending	Ether	to	a

contract	account	in	a	transaction

A	contract	account	sending	Ether	to	another	contract

account	in	a	transaction

A	contract	account	sending	Ether	to	an	externally

owned	account	in	a	transaction

Deployment	of	a	smart	contract:	An	externally	owned

account	can	deploy	a	contract	using	a	transaction	in	EVM.

Using	or	invoking	a	function	within	a	contract:

Executing	a	function	in	a	contract	that	changes	state	is

considered	a	transaction	in	Ethereum.	If	executing	a

function	does	not	change	a	state,	it	does	not	require	a

transaction.

A	transaction	has	some	of	the	following	important	properties
related	to	it:

The	from	account	property	denotes	the	account	that	is

originating	the	transaction	and	represents	an	account	that	is

ready	to	send	some	gas	or	Ether.	Both	gas	and	Ether

concepts	were	discussed	earlier	in	this	chapter.	The	from

account	can	be	externally	owned	or	a	contract	account.

The	to	account	property	refers	to	an	account	that	is	receiving

Ether	or	benefits	in	lieu	of	an	exchange.	For	transactions

related	to	deployment	of	contract,	the	to	field	is	empty.	It

can	be	externally	owned	or	a	contract	account.

The	value	account	property	refers	to	the	amount	of	Ether	that

is	transferred	from	one	account	to	another.

The	input	account	property	refers	to	the	compiled	contract

bytecode	and	is	used	during	contract	deployment	in	EVM.	It

is	also	used	for	storing	data	related	to	smart	contract

function	calls	along	with	its	parameters.	A	typical

transaction	in	Ethereum	where	a	contract	function	is

invoked	is	shown	here.	In	the	following	screenshot,	notice

the	input	field	containing	the	function	call	to	contract	along

with	its	parameters:

The	blockHash	account	property	refers	to	the	hash	of	block	to

which	this	transaction	belongs.

The	blockNumber	account	property	is	the	block	in	which	this

transaction	belongs.

The	gas	account	property	refers	to	the	amount	of	gas

supplied	by	the	sender	who	is	executing	this	transaction.

The	gasPrice	account	property	refers	to	the	price	per	gas	the

sender	was	willing	to	pay	in	wei	(we	have	already	learned

about	wei	in	the	Ether	section	in	this	chapter).	Total	gas	is

computed	at	gas	units	*	gas	price.

The	hash	account	property	refers	to	the	hash	of	the

transaction.

The	nonce	account	property	refers	to	the	number	of

transactions	made	by	the	sender	prior	to	the	current

transaction.

The	transactionIndex	account	property	refers	to	the	serial

number	of	the	current	transactions	in	the	block.

The	value	account	property	refers	to	the	amount	of	Ether

transferred	in	wei.

The	v,	r,	and	s	account	properties	relate	to	digital	signatures

and	the	signing	of	the	transaction.

A	typical	transaction	in	Ethereum,	where	an	externally	owned
account	sends	some	Ether	to	another	externally	owned	account,	is
shown	here.	Notice	the	input	field	is	not	used	here.	Since	two	Ethers
were	sent	in	transaction,	the	value	field	is	showing	the	value
accordingly	in	wei	as	shown	in	the	following	screenshot:

One	method	to	send	Ether	from	an	externally	owned	account	to
another	externally	owned	account	is	shown	in	the	following	code
snippet	using	web3	JavaScript	framework,	which	will	be	covered	later
in	this	book:

web.eth.sendTransaction({from:	web.eth.accounts[0],	to:	

"0x9d2a327b320da739ed6b0da33c3809946cc8cf6a",	value:	web.toWei(2,	'ether')})

A	typical	transaction	in	Ethereum	where	a	contract	is	deployed	is
shown	in	the	following	screenshot.	In	the	following	screenshot,
notice	the	input	field	containing	the	bytecode	of	contract:

Blocks
Blocks	are	an	important	concept	in	Ethereum.	Blocks	are	containers
for	a	transaction.	A	block	contains	multiple	transactions.	Each
block	has	a	different	number	of	transactions	based	on	gas	limit	and
block	size.	Gas	limit	will	be	explained	in	detail	in	later	sections.	The
blocks	are	chained	together	to	form	a	blockchain.	Each	block	has	a
parent	block	and	it	stores	the	hash	of	the	parent	block	in	its	header.
Only	the	first	block,	known	as	the	genesis	block,	does	not	have	a
parent.

A	typical	block	in	Ethereum	is	shown	in	the	following	screenshot:

There	are	a	lot	of	properties	associated	with	a	block,	providing

insights	and	metadata	about	it,	and	following	are	some	of	important
properties	along	with	their	descriptions:

The	difficulty	property	determines	the	complexity	of	the

puzzle/challenge	given	to	miners	for	this	block.

The	gasLimit	property	determines	the	maximum	gas	allowed.

This	helps	in	determining	how	many	transactions	can	be

part	of	the	block.

The	gasUsed	property	refers	to	the	actual	gas	used	for	this

block	for	executing	all	transactions	in	it.

The	hash	property	refers	to	the	hash	of	the	block.

The	nonce	property	refers	to	the	number	that	helps	in	solving

the	challenge.

The	miner	property	is	the	account	identifier	of	the	miner,	also

known	as	coinbase	or	etherbase.

The	number	property	is	the	sequential	number	of	this	block	on

the	chain.

The	parentHash	property	refers	to	the	parent	block's	hash.

The	receiptsRoot,	stateRoot,	and	transactionsRoot	properties	refer	to

Merkle	trees	discussed	during	the	mining	process.

The	transactions	property	refers	to	an	array	of	transactions

that	are	part	of	this	block.

The	totalDifficulty	property	refers	to	the	total	difficulty	of	the

chain.

An	end-to-end	transaction
Armed	with	the	understanding	of	the	foundational	concepts	of
blockchain	and	Ethereum,	it's	time	to	see	a	complete	end-to-end
transaction	and	how	it	flows	through	multiple	components	and	gets
stored	in	the	ledger.

In	this	example,	Sam	wants	to	send	a	digital	asset	(for	example,
dollars)	to	Mark.	Sam	generates	a	transaction	message	containing
the	from,	to,	and	value	fields	and	sends	it	across	to	the	Ethereum
network.	The	transaction	is	not	written	to	the	ledger	immediately
and	instead	is	placed	in	a	transaction	pool.

The	mining	node	creates	a	new	block	and	takes	all	transactions
from	the	pool	honoring	the	gas	limit	criteria	and	adds	them	to	the
block.	This	activity	is	done	by	all	miners	on	the	network.	Sam's
transaction	will	also	be	a	part	of	this	process.

The	miners	compete	trying	to	solve	the	challenge	thrown	to	them.
The	winner	is	the	miner	who	can	solve	the	challenge	first.	After	a
period	(of	seconds)	one	of	the	miners	will	advertise	that	they	has
found	the	solution	to	the	challenge	and	that	they	are	the	winner	and
should	write	the	block	to	the	chain.	The	winner	sends	the	challenge
solution	along	with	the	new	block	to	all	other	miners.	The	rest	of
the	miners	validate	and	verify	the	solution	and,	once	satisfied	that
the	solution	is	indeed	correct	and	that	the	original	miner	has
cracked	the	challenge,	they	accept	the	new	block	containing	Sam's
transaction	to	append	in	their	instance	of	the	ledger.	This	generates
a	new	block	on	the	chain	that	is	persisted	across	time	and	space.
During	this	time,	the	accounts	of	both	parties	are	updated	with	the
new	balance.	Finally,	the	block	is	replicated	across	every	node	in	the
network.

The	preceding	example	can	be	well	understood	with	the	following
diagram:

What	is	a	contract?
A	contract	is	a	legal	document	that	binds	two	or	more	parties	who
agree	to	execute	a	transaction	immediately	or	in	the	future.	Since
contracts	are	legal	documents,	they	are	enforced	and	implemented
by	law.	Examples	of	contracts	are	an	individual	entering	into	a
contract	with	an	insurance	company	for	covering	their	health
insurance,	an	individual	buying	a	piece	of	land	from	another
individual,	or	a	company	selling	its	shares	to	another	company.

What	is	a	smart	contract?
A	smart	contract	is	custom	logic	and	code	deployed	and	executed
within	an	Ethereum	virtual	environment.	Smart	contracts	are
digitized	and	codified	rules	of	transaction	between	accounts.	Smart
contracts	help	in	transferring	digital	assets	between	accounts	as	an
atomic	transaction.	Smart	contracts	can	store	data.	The	data	stored
can	be	used	to	record	information,	facts,	associations,	balances,	and
any	other	information	needed	to	implement	logic	for	real-world
contracts.	Smart	contracts	are	very	similar	to	object-oriented
classes.	A	smart	contract	can	call	another	smart	contract	just	like	an
object-oriented	object	can	create	and	use	objects	of	another	class.
Think	of	smart	contracts	as	a	small	program	consisting	of	functions.
You	can	create	an	instance	of	the	contract	and	invoke	functions	to
view	and	update	contract	data	along	with	the	execution	of	some
logic.

How	to	write	smart	contracts?
There	are	multiple	smart	contracts	authoring	tools	including	Visual
Studio.	However,	the	easiest	and	fastest	way	to	develop	smart
contracts	is	to	use	a	browser-based	tool	known	as	Remix.	Remix	is
available	on	http://remix.ethereum.org.	Remix	is	a	new	name	and	was
earlier	known	as	browser-solidity.	Remix	provides	a	rich
integrated	development	environment	in	a	browser	for	authoring,
developing,	deploying,	and	troubleshooting	contracts	written	using
the	Solidity	language.	All	contract	management	related	activities
such	as	authoring,	deploying,	and	troubleshooting	can	be
performed	from	the	same	environment	without	moving	to	other
windows	or	tabs.

Not	everyone	is	comfortable	using	the	online	version	of	Remix	to
author	their	smart	contracts.	Remix	is	an	open	source	tool	that	can
be	downloaded	from	https://github.com/ethereum/browser-Solidity	and
compiled	to	run	a	private	version	on	a	local	computer.	Another
advantage	of	running	Remix	locally	is	that	it	can	connect	to	local
private	chain	networks	directly;	otherwise,	users	will	first	have	to
author	the	contract	online	and	then	copy	the	same	to	a	file,	compile,
and	deploy	manually	to	a	private	network.	Let's	explore	Remix	by
performing	the	following	steps:

1.	 Navigate	to	remix.ethereum.org	and	the	site	will	open	in	a

browser	with	a	default	contract	as	shown	in	the	following

screenshot.	If	you	do	not	need	this	contract,	it	can	be

deleted:

http://remix.ethereum.org
https://github.com/ethereum/browser-solidity
http://remix.ethereum.org

2.	 The	first	thing	we	need	to	do	is	to	create	a	new	contract	by

selecting	+	from	Remix's	left	menu	bar.

3.	 Then,	provide	a	name	for	a	new	Solidity	file	that	has	an

extension	.sol.	Name	the	contract	HelloWorld	and	click	on	OK

to	continue	as	shown	in	the	following	screenshot.	This	will

create	a	blank	contract:

4.	 Type	the	following	code	in	the	empty	authoring	pane	to

create	your	first	contract.	This	contract	will	be	explained	in

detail	in	Chapter	3,	Introducing	Solidity.	For	now,	it	is

sufficient	to	understand	that	the	contract	is	created	using

the	contract	keyword;	you	can	declare	global	state	variables

and	functions;	and	contracts	are	saved	with	the	.sol	file

extension.	In	the	following	code	snippet,	the	HelloWorld

contracts	returns	the	HelloWorld	string	when	the	GetHelloWorld

function	is	called:

pragma	Solidity	^0.4.18;

contract	HelloWorld

{

string	private	stateVariable	=	"Hello	World";

function	GetHelloWorld()	public	view	returns	(string)

{

return	stateVariable;

}

}

Look	at	the	action	window	to	the	right	of	Remix.	It	has	got
several	tabs—Compile,	Run,	Settings,	Debugger,	Analysis,
and	Support.	These	action	tabs	help	in	compiling,	deploying,
troubleshooting,	and	invoking	contracts.	The	Compile	tab
compiles	the	contract	into	bytecode—code	that	is	understood
by	Ethereum.	It	displays	warnings	and	errors	as	you	author
and	edit	the	contract.	These	warnings	and	errors	are	to	be
taken	seriously	and	they	really	help	in	creating	robust
contracts.	The	Run	tab	is	the	place	where	you	will	spend	the
most	time,	apart	from	writing	the	contract.	Remix	comes
bundled	with	the	Ethereum	runtime	within	the	browser.	The
Run	tab	allows	you	to	deploy	the	contract	to	this	runtime
using	the	JavaScript	VM	environment	in
the	Environment	option.	The	Injected	Web3	environment	is
used	along	with	tools	such	as	Mist	and	MetaMask,	which	will
be	covered	in	the	next	chapter,	and	Web3	Provider	can	be
used	when	using	Remix	in	a	local	environment	connecting	to
private	network.	In	our	case	for	this	chapter,	the	default,
JavaScript	VM	is	sufficient.	The	rest	of	the	options	will	be

discussed	later	in	Chapter	3,	Introducing	Solidity.

5.	 However,	the	important	action	is	deployment	of	a	contract

and	that	can	be	done	using	the	Create	button	to	deploy	the

contract	that	is	shown	in	the	following	screenshot:

6.	 Click	on	the	Create	button	to	deploy	the	contract	to	the

browser	Ethereum	runtime	and	this	will	list	all	the	functions

available	within	the	contract	below	the	Create	button.	Since

we	only	had	a	single	function	GetHelloWorld,	the	same	is

displayed	as	shown	in	the	following	screenshot:

7.	 Click	on	the	GetHelloWorld	button	to	invoke	and	execute

the	function.	The	lower	pane	of	Remix	will	show	the	results

of	execution	as	shown	in	the	following	screenshot:

Congratulations,	you	have	created,	deployed,	and	also	executed	a
function	on	your	first	contract.	The	code	for	the	HelloWorld	contract	is
accompanied	with	this	chapter	and	can	be	used	in	Remix	if	you	are
not	interested	in	typing	the	contract.

How	are	contracts	deployed?
Remix	makes	deployment	of	contracts	a	breeze;	however,	it	is
performing	a	lot	of	steps	behind	the	scenes.	It	is	always	useful	to
understand	the	process	of	deploying	contracts	to	have	finer	control
over	the	deployment	process.

The	first	step	is	the	compilation	of	contracts.	The	compilation	is
done	using	the	Solidity	compiler.	The	next	chapter	will	show	you
how	to	download	and	compile	a	contract	using	the	Solidity
compiler.

The	compiler	generates	the	following	two	major	artifacts:

ABI	definition	

Contracts	bytecode

Think	of	the	Application	Binary	Interface	(ABI)	as	an	interface
consisting	of	all	external	and	public	function	declarations	along
with	their	parameters	and	return	types.	The	ABI	defines	the
contract	and	any	caller	wanting	to	invoke	any	contract	function	can
use	the	ABI	to	do	so.

The	bytecode	is	what	represents	the	contract	and	it	is	deployed	in
the	Ethereum	ecosystem.	The	bytecode	is	required	during
deployment	and	ABI	is	needed	for	invoking	functions	in	a	contract.

A	new	instance	of	a	contract	is	created	using	the	ABI	definition.

Deploying	a	contract	itself	is	a	transaction.	A	transaction	is	created
for	deploying	the	contract	on	Ethereum.	The	bytecode	and	ABI	are

necessary	inputs	for	deploying	a	contract.

As	any	transaction	execution	costs	gas	in	Euthereum,	appropriate
quantity	of	gas	should	be	supplied	while	deploying	the	contract.	As
and	when	the	transaction	is	mined,	the	contract	is	would	be
available	for	interaction	through	contract	address.

Using	the	newly	generated	address,	callers	can	invoke	functions
within	the	contract.

Summary
This	chapter	was	an	introduction	to	blockchains	and,	more
specifically,	to	Ethereum.	Having	a	good	understanding	of	the	big
picture	about	how	blockchains	and	Ethereum	work	will	go	a	long
way	in	understanding	how	to	write	robust,	secure,	and	cost	effective
smart	contracts	using	Solidity.	This	chapter	covered	the	basics	of
blockchain,	explained	what	blockchains	are,	why	blockchains	are
important,	and	how	they	help	in	building	decentralized	and
distributed	applications.	The	architecture	of	Ethereum	was
discussed	in	brief	along	with	some	of	the	important	concepts	such
as	transactions,	blocks,	gas,	Ether,	accounts,	cryptography,	and
mining.	This	chapter	also	touched	briefly	on	the	topic	of	smart
contracts,	using	Remix	to	author	smart	contracts	and	how	to
execute	them	using	Remix	itself.	I've	kept	this	chapter	brief	since
the	rest	of	the	book	will	explain	these	concepts	further	and	it	will
allow	you	to	quickly	develop	Solidity-based	smart	contracts.

You'll	notice	that	this	chapter	does	not	contain	any	mention	of
Ethereum	tools	and	utilities.	This	is	what	we	will	cover	in	the	next
chapter,	by	diving	straight	in	and	installing	Ethereum	and	its
toolset.	The	Ethereum	ecosystem	is	quite	rich	and	there	are	lots	of
tools.	We	will	cover	important	ones,	such	as	web3.js,	TestRPC,	Geth,
Mist,	and	MetaMask.

Installing	Ethereum	and
Solidity
In	the	previous	chapter,	we	had	an	overview	of	all	major	concepts
related	to	blockchains,	particularly	focusing	on	ones	related	to
Ethereum	and	discussed	the	fundamentals	related	to	working	with
blockchains	in	general.	Ethereum-based	blockchain	solutions	can
be	deployed	to	multiple	networks.	They	can	be	deployed	on	public
networks,	test	networks,	or	private	networks.	This	chapter	focuses
on	introducing	and	deploying	Ethereum-based	tools	and	utilities
that	are	needed	for	building	Ethereum-based	solutions.	There	are
plenty	of	tools	in	the	Ethereum	ecosystem	and	this	chapter	will
focus	on	some	of	the	most	important	and	necessary	tools.	The	tools
will	be	deployed	on	Windows	Server	2016	on	Azure	Cloud.
However,	they	can	be	deployed	on	Linux,	Mac,	and	any	virtual
machine	or	physical	computer,	as	well.	This	will	also	be	used	as	our
development	environment	for	testing,	deploying,	creating,	and
using	Solidity	contracts	throughout	this	book.

In	this	chapter,	we'll	cover	the	following	topics:

Introducing	Ethereum	networks

Installing	and	configuring	Geth

Creating	a	private	network

Installing	and	configuring	TestRPC

Installing	Solidity	compiler—solc

Installing	web3	framework

Installing	and	working	with	Mist

Installing	and	working	with	MetaMask

Ethereum	networks
Ethereum	is	an	open	source	platform	for	creating	and	deploying
distributed	applications.

Ethereum	is	backed	up	by	a	large	number	of	computers	(also	known
as	nodes)—all	interconnected	and	storing	data	in	a	distributed
ledger.	Distributed	ledger	here	means	that	a	copy	of	this	ledger	is
available	to	each	and	every	node	on	the	network.	It	provides
flexibility	to	its	developers	to	deploy	their	solution	to	multiple
types.	Developers	should	choose	an	appropriate	network	based	on
their	requirements	and	use	cases.	These	different	networks	also
help	in	deploying	solutions	and	smart	contracts	on	networks	that	do
not	actually	cost	any	Ether	or	money.	There	are	networks	that	are
free	of	cost	while	there	are	ones	that	require	its	users	to	pay	in
terms	of	Ether	or	other	currencies	for	its	usage.

Main	network
The	main	Ethereum	network	is	a	global	public	network	that
anybody	can	use.	It	can	be	accessed	using	an	account	and	everybody
is	free	to	create	an	account	and	deploy	their	solutions	and	smart
contracts.	Using	a	main	network	incurs	costs	in	terms	of	gas.	The
main	network	is	known	as	Homestead	and	was	earlier	known	as
Frontier.	This	is	a	public	chain	accessible	over	the	internet	and
anybody	can	connect	to	it	and	access	both	data	and	transactions
stored	in	it.	

Test	network
A	test	network	exists	to	help	facilitate	and	increase	adoption	of
the	Ethereum	blockchain.	They	are	the	exact	replica	of	the	main
network.	Using	these	networks	does	not	cost	anything	for
deployment	and	usage	of	contracts.	They	are	completely	free	of
cost.	This	is	because	test	Ethers	can	be	generated	using	faucets	and
used	on	these	networks.	There	are	multiple	test	networks	available
at	the	time	of	writing,	such	as	Ropsten,	Kovan,	and	Rinkeby.

Ropsten
Ropsten	is	one	of	the	first	test	networks	that	use	PoW	consensus
methods	for	generating	blocks.	It	was	earlier	known	as	Morden.	As
mentioned	before,	it	is	completely	free	of	cost	for	usage	and	it	can
be	used	during	the	building	and	testing	of	smart	contracts.	It	can	be
used	by	using	the	--testnet	option	available	in	Geth.	Geth	will	be
explained	in	detail	in	the	next	section.	This	is	by	far	the	most
popular	test	network.

Rinkeby
Rinkeby	is	another	Ethereum-based	test	network	that	uses	PoA	as
its	consensus	mechanism.	PoW	and	PoA	are	different	mechanisms
for	building	consensus	among	miners.	PoW	is	robust	enough	to
maintain	immutability	and	decentralization	of	data;	however,	it	has
drawbacks	in	not	having	enough	control	over	miners.	PoA,	on	the
other	hand,	has	all	the	benefits	of	PoW	along	with	having	more
control	over	the	miners.

Kovan
Kovan	test	networks	can	only	be	used	by	parity	clients	and	hence
won't	be	discussed	or	used	in	this	book.	However	more	information
is	available	at	https://kovan-testnet.github.io/website/.

https://kovan-testnet.github.io/website/

Private	network
A	private	network	is	created	and	hosted	on	a	private
infrastructure.	Private	networks	are	controlled	by	a	single
organization	and	they	have	full	control	over	it.	There	are	solutions,
contracts,	and	use	cases	that	an	organization	might	not	want	to	put
on	a	public	network	even	for	test	purposes.	They	want	to	use	private
chains	for	development,	testing,	and	production	environments.
Organizations	should	create	and	host	a	private	network	and	they
will	have	full	control	over	it.	Further	in	this	chapter,	we	will	see	how
to	create	your	own	private	network.

Consortium	network
A	consortium	network	is	also	a	private	network,	however,	with	a
difference.	The	consortium	network	comprises	nodes,	each
managed	by	a	different	organization.	In	effect,	no	organization	has
a	control	over	the	data	and	chain.	However,	it	is	shared	within	the
organization	and	everyone	from	these	organizations	can	view	and
modify	the	current	state.	These	might	be	accessible	through	the
internet	or	completely	private	networks	using	VPN.

Geth
Implementation	of	Ethereum	nodes	and	clients	is	available	in
multiple	languages,	including	Go,	C++,	Python,	JavaScript,	Java,
Ruby,	and	more.	The	functionality	or	usability	of	these	clients	are
the	same	across	languages,	and	developers	should	choose	an
implementation	they	are	most	comfortable	with.	This	book	uses	the
Go	implementation	known	as	Geth,	which	acts	as	an	Ethereum
client	to	connect	to	public	and	test	networks.	It	is	also	used	to	create
the	mining	and	EVM	(transaction	nodes)	for	private	networks.	Geth
is	a	command-line	tool	written	in	Go	for	creating	a	node	and	miners
on	a	private	chain.	It	can	be	installed	on	Windows,	Linux,	and	Mac
as	well.	Now,	its	time	to	install	Geth.

Installing	Geth	on	Windows
The	first	step	in	creating	a	private	Ethereum	network	is	to
download	and	install	Geth	(go-ethereum)	tool.

In	this	section,	the	steps	to	download	and	install	Geth	on	Windows
are	as	follows:

1.	 Geth	can	be	downloaded	from	the	https://ethereum.github.io/go-et

hereum/downloads/	page.	It	is	available	for	both	32	and	64	bit

machines.	Windows	Server	2016	on	Azure	is	used	for	all

purposes	in	this	book.

2.	 After	downloading,	start	the	installation	process	by

executing	the	executable	and	follow	the	steps,	accepting	the

defaults.	Install	development	tools	as	a	recommended

practice	on	development	environments.

3.	 Once	Geth	is	installed,	it	should	be	available	from	Command

Prompt	or	PowerShell.

4.	 Open	Command	Prompt	and	type	geth	-help.

A	word	of	caution	here—just	typing	Geth	and	executing	it	will	connect	Geth
to	a	public	main	network	and	it	will	start	syncing	and	downloading	all	the
blocks	and	transactions.

The	current	chain	has	more	than	30	GB	of	data.	help	will	show	all
the	commands	and	options	available	with	Geth.	It	will	also	show	the
current	version	as	shown	in	the	following	screenshot:

https://ethereum.github.io/go-ethereum/downloads/

Geth	is	based	on	JSON	RPC	protocol.	It	defines	the	specification	for
remote	procedure	calls	with	payload	encoded	in	JSON	format.	Geth
allows	connectivity	to	JSON	RPC	using	the	following	three	different
protocols:

Inter	Process	Communication	(IPC):		This	protocol	is

used	for	inter	process	communication	generally	used	within

the	same	computer.

Remote	Procedure	Calls	(RPC):		This	protocol	is	used

for	inter	process	communication	across	computers.	This	is

generally	based	on	TCP	and	HTTP	protocol.

Web	Sockets	(WS):	This	protocol	is	used	to	connect	to

Geth	using	sockets.

There	are	many	commands,	switches,	and	options	for	configuring
Geth,	which	include	the	following:

Configuring	IPC,	RPC,	and	WS	protocols

Configuring	network	types	to	connect—private,	Ropster,	and

Rinkeby

Mining	options

Console	and	API

Networking	

Debugging	and	logging

Some	of	the	important	options	for	creating	a	private	network	will	be
discussed	in	the	next	section.

Geth	can	be	used	to	connect	to	a	public	network	by	just	running	Geth
without	any	options.	Homestead	is	the	current	name	of	public
Ethereum.	Its	networkid	and	ChainID	is	1	as	shown	in	the	following
screenshot:

The	following	are	the	network	IDs	used	for	connecting	to	the
following	different	networks:

The	chain	ID	1	represents	a	Homestead	public	network

The	chain	ID	2	represents	Morden	(not	used	anymore)

The	chain	ID	3	represents	Ropsten

The	chain	ID	4	represents	Rinkeby

The	chain	ID	above	4	represents	a	private	network

Geth	provides	the	--testnet	option	to	connect	to	a	Ropsten	network
and	the	--rinkeby	option	to	connect	to	the	Rinkeby	option.	These
should	be	used	in	conjunction	with	the	networkid	command	option.

Creating	a	private	network
After	Geth	is	installed,	it	can	be	configured	to	run	locally	without
connecting	to	any	network	on	the	internet.	Every	chain	and	network
has	a	genesis	block	or	the	first	block.	This	block	does	not	have	any
parent	and	is	the	first	block	of	the	chain.	A	genesis.json	file	is	required
to	create	this	first	block.	A	sample	genesis.json	file	is	shown	in	the
following	code	snippet:

{		

"config":	{

"chainId":	15,

"homesteadBlock":	0,

"eip155Block":	0,

"eip158Block":	0

},

"nonce":	"0x0000000000000042",

"mixhash":	

"0x00",

"difficulty":	"0x200",

"alloc":	{},

"coinbase":	"0x00",

"timestamp":	"0x00",

"parentHash":	

"0x00",

"gasLimit":	"0xffffffff",

"alloc":	{

}

}

Let's	take	a	look	at	the	following	steps	to	create	a	private	network:

1.	 The	genesis.json	file	should	be	passed	to	Geth	to	initialize	the

private	network.	The	Geth	node	also	needs	to	store	the

blockchain	data	and	account	keys.	This	information	should

also	be	provided	to	Geth	while	initializing	the	private

network.

2.	 The	following	geth	init	command	initializes	the	node	with	the

genesis.json	file	and	target	data	directory	location	to	store	the

chaindata	and	keystore	information:

C:\Windows\system32>geth	init	"C:\myeth\genesis.json"	--datadir	

"C:\myeth\chaindata"

The	preceding	command	line	will	generate	the	following
output:

3.	 After	the	Geth	node	is	initialized	with	the	genesis	block	as

shown	in	the	preceding	screenshot,	Geth	can	be	started.

Geth	uses	IPC	protocol	by	default	and	will	be	enabled.	For

ensuring	that	the	Geth	node	is	reachable	using	RPC

protocol,	RPC	options	need	to	be	provided	explicitly.

4.	 For	setting	up	an	environment	as	a	Geth	node,	execute	the

following	command	line:	

geth	--datadir	"C:\myeth\chaindata"	--rpc	--rpcapi	"eth,web3,miner,

admin,personal,net"	--rpccorsdomain	"*"	--nodiscover	--networkid	15

The	preceding	command	line	will	generate	the	following
output:

There	are	a	lot	of	important	activities	happening	when	this
command	is	executed.	The	command	is	executed	with
the	datadir	information,	enabling	RPC,	modules,	and	APIs
that	are	exposed	from	this	node	instance	when	using	RPC	to
connect,	and	networkid	of	15	denoting	that	it	is	a	private
network.	The	result	of	executing	this	command	also	provides
useful	insights.	First,	the	etherbase	or	coinbase	is	not	set.
The	coinbase	or	etherbase	account	should	be	created	and	set
before	mining	is	started.	As	of	now,	mining	has	not	started
although	it	was	possible	to	auto-start	mining	with	this
command	itself.	The	information	about	current	database
location	is	printed	on	the	screen.	The	output	also
displays	ChainID	and	whether	it	is	connected	to	a	Homestead
public	network.	A	value	of	zero	means	it	is	not	connected	to	a
Homestead	network.	The	output	also	contains	the	enode
value,	which	is	a	node	identifier	on	the	network.	If	more
nodes	want	to	join	this	network,	they	should	provide	this
enode	value	to	join	this	chain	and	network.	Toward	the	end,
the	output	shows	that	both	IPC	and	RPC	protocols	are	up
and	running	and	accepting	requests.	The	RPC	endpoint	is
available	at	http://127.0.0.1:8545	or	http://localhost:8545	and	IPC	is
available	at	\\.\pipe\geth.ipc.	Take	a	look	at	the	following
command	line:

geth	--datadir	"C:\myeth\chaindata"	--rpc	--rpcapi	

"eth,web3,miner,admin,personal,net"	--rpccorsdomain	"*"	--nodiscover	

--networkid	15

5.	 The	preceding	command	will	get	the	private	Ethereum	node

up	and	running.	However,	astute	readers	will	notice	that	the

command	runs	as	a	service.	Additional	commands	cannot	be

executed	through	it.	To	manage	existing	running	Geth

nodes,	open	another	command	window	on	the	same

computer	and	type	the	Geth	attach	ipc:\\.\pipe\geth.ipc	command

for	connecting	using	IPC	protocol.	You	will	get	the	following

output:

6.	 To	connect	to	a	private	Geth	instance	through	RPC

endpoint,	use	the	command	Geth	attach	rpc:http://localhost:8545

or	use	Geth	attach	rpc:http://127.0.0.1:8545	to	connect	to	a	local

running	instance	of	Ethereum.	If	you	see	a	different	output

than	shown	here,	it's	because	the	coinbase	account	is

already	set	in	my	case.	Adding	a	coinbase	account	is	shown

later	in	this	section.

7.	 The	default	RPC	port	on	which	these	endpoints	are	hosted	is

8545,	which	can	be	changed	using	the	-rpcport	Geth	command

line	option.	The	IP	address	can	be	changed	using	the	-rpcaddr

option:

8.	 After	connecting	to	a	Geth	node,	it's	time	to	set	up	the

coinbase	or	etherbase	account.	For	this,	a	new	account

should	be	created	first.	To	create	a	new	account,	use

the	newAccount	method	of	the	personal	object.	While	creating	a

new	account,	provide	passphrase	that	acts	like	a	password	for

the	account.	The	output	of	this	execution	is	the	account	ID

as	shown	in	the	following	screenshot:

9.	 With	the	account	ID	provisioned,	it	should	be	tagged	as	a

coinbase	or	etherbase	account.	To	do	this,	the	Geth	provider

has	to	change	the	coinbase	address.miner	object	with

the	setEtherBase	function.	This	method	will	change	the	current

coinbase	to	the	provided	account.	The	output	of	the

command	is	true	or	false	as	shown	in	the	following

screenshot:

10.	 Now	run	the	following	query	to	find	the	current	coinbase

account	by	executing	the	following	command:

eth.coinbase

It	should	output	the	same	account	address	that	was	recently
created	as	shown	in	the	following	screenshot:

With	the	coinbase	set	with	a	valid	account	and	Geth	node	up
and	running,	now	mining	can	get	started	and,	since	we	just
have	one	miner,	all	rewards	will	go	to	this	miner	and	its
coinbase	account	will	be	credited	with	Ethers.

11.	 To	start	mining,	execute	the	following	command:

miner.start()

You	can	also	use	the	following	command	line:

miner.start(4)

The	preceding	command	line	generates	the	following	output:

The	parameter	to	the	start	method	represents	the	number	of
threads	used	for	mining.	This	will	result	in	mining	getting
started	and	the	same	can	be	viewed	from	the	original
command	window:

12.	 Mining	can	be	stopped	from	the	second	command	window

using	the	miner.stop()	command.

ganache-cli
There	are	following	two	distinct	phases	in	the	overall	modification
and	writing	of	transactions	to	a	ledger	using	Ethereum:

The	first	stage	is	about	creating	a	transaction	and	putting

the	transaction	in	a	transaction	pool.

The	second	phase	that	happens	periodically	is	to	get	all

transactions	from	a	transaction	pool	and	mine	them.	Mining

here	means	writing	those	transactions	to	the	Ethereum

database	or	ledger.

From	this	description,	it	would	be	a	time-consuming	process	if	the
same	process	is	used	for	development	and	testing	purposes.	To	ease
the	process	of	development	and	test	of	solutions	and	smart
contracts	on	Ethereum,	ganache-cli	was	created.	It	was	earlier
known	as	TestRPC.	ganache-cli	by	itself	contains	both	the
Ethereum	transaction	processing	and	mining	functionality.
Moreover,	there	is	no	waiting	period	for	mining	of	transactions.	The
transactions	are	written	as	they	are	generated.	It	means	developers
can	use	ganache-cli	as	their	Ethereum	node	and	do	not	need	mining
activity	to	write	transactions	to	a	ledger.	Instead,	the	transactions
are	stored	in	a	ledger	as	they	are	created.

ganache-cli	is	dependent	on	Node.js	and	it	should	be	available	on
the	machine	before	deploying	ganache-cli.	If	Node.js	is	not
installed,	it	can	be	downloaded	from	https://nodejs.org/en/download/.
Based	on	processor	architecture	(32	or	64	bit)	and	operating
system,	an	appropriate	package	can	be	downloaded	and	installed
from	the	given	link	as	shown	in	the	following	screenshot:

https://nodejs.org/en/download/

Here,	we	have	downloaded	the	64	bit	version	of	MSI	Windows
installer	and	both	node	package	manager	(NPM)	and	Node.js
are	installed	using	it.

The	Node.js	version	is	v8.9.1	as	shown	in	the	following	screenshot:

The	npm	version	is	5.5.1	as	shown	in	the	following	screenshot:

ganache-cli	can	be	installed	using	the	following	npm	install	command:

npm	install	-g	ganache-cli

The	preceding	command	line	generates	the	following	output:

After	installation	of	ganache-cli,	an	Ethereum	node	based	on	it	can
be	started	using	the	following	command:

ganache-cli

The	result	of	executing	the	preceding	command	is	that	it	creates	10
accounts	by	default,	each	having	100	Ether	in	balance	with	them,
and	it	can	be	used	just	the	way	any	other	private	network	is	used	as
shown	in	the	following	screenshot:	

Another	command	window	can	be	used	along	with	the	Geth
command	line	to	attach	to	it,	just	like	in	the	following	screenshot:

Solidity	compiler
Solidity	is	one	of	the	languages	that	is	used	to	author	smart
contracts.	Smart	contracts	will	be	dealt	with	in	detail	in	the
following	chapters.	The	code	written	using	Solidity	is	compiled
using	a	Solidity	compiler,	which	outputs	byte	code	and	other
artifacts	needed	for	deployment	of	smart	contracts.	Earlier,	Solidity
was	part	of	the	Geth	installation;	however,	it	has	moved	out	of	Geth
and	should	be	deployed	using	its	own	installation.

The	Solidity	compiler	also	known	as	solc	can	be	installed	using	npm:

npm	install	-g	solc

The	preceding	command	line	generates	the	following	output:

The	web3	JavaScript	library
The	web3	library	is	an	open	source	JavaScript	library	that	can	be	used
to	connect	to	Ethereum	nodes	from	the	same	or	a	remote	computer.
It	allows	IPC	as	well	as	RPC	to	connect	to	Ethereum	nodes.	web3	is	a
client-side	library	and	can	be	used	alongside	a	web	page	and	query
and	can	submit	transactions	to	Ethereum	nodes.	It	can	be	installed
using	the	node	package	manager	as	a	node	module	like	the	Solidity
compiler.	At	the	time	of	writing,	the	latest	version	of	web3	is	broken
and	does	not	install	appropriately	because	of	the	missing	BigNumber.js
file.	However,	previous	stable	versions	can	be	used	for	connecting
web	applications	to	backend	Ethereum	nodes.	Let's	take	a	look	at
the	following	steps	to	install	the	web3	JavaScript	library:

1.	 The	command	used	to	install	web3	is	as	follows:

npm	install	web3@0.19

The	preceding	command	generates	the	following	output:

2.	 After	web3	is	installed,	it	can	be	used	using	Node.js.	From

Command	Prompt,	enter	the	node	workspace	by	executing

the	node	command	as	shown	in	the	following	screenshot:

3.	 Once	in	the	node	workspace,	type	the	following	commands

to	connect	to	an	Ethereum	node.	The	Ethereum	node	could

be	TestRPC	or	a	custom	Geth-based	private	network.	web3

can	use	WebSockets,	IPC,	or	RPC	to	connect	to	an	Ethereum

node.	The	following	example	shows	the	RPC	endpoint

protocol	used	to	connect	web3	to	an	Ethereum	node:

var	Web	=	require('web3')

var	web	=	new	Web	(new	

Web.providers.HttpProvider('http://localhost:8545'))

The	first	command	loads	the	web3	module	and	the	second
command	creates	an	instance	of	HttpProvider	and	connects	to
the	local	hosted	Ethereum	node	on	port	8545.

4.	 To	ensure	that	web3	is	actually	connected	to	an	Ethereum

node,	execute	the	isConnected	method.	If	it	returns	true	then	it

means	that	web3	is	connected	as	shown	in	the	following

screenshot:

Mist	wallet
Ethereum	works	with	Ether	cryptocurrency	and	a	wallet	is	required
to	send	and	receive	Ether.	Mist	is	an	implementation	of	the	same.
Mist	is	a	wallet	used	to	send	and	receive	Ether.	It	helps	in	executing
transactions	on	the	Ethereum	network.	The	network	can	be	public
or	private.	It	allows	users	to	create	their	accounts,	send	and	receive
Ether,	and	deploy	and	invoke	contracts.

Mist	can	be	downloaded	from	https://github.com/ethereum/mist/releases.
Download	an	appropriate	ZIP	file	(in	this	case	it	is	Ethereum-Wallet-
win64-0-9-2.zip	since	we	are	deploying	on	Windows	2016)	and	extract
to	a	file	location.	Double-click	on	the	Ethereum	Wallet	application
from	the	extracted	files	as	shown	in	the	following	screenshot:

This	should	start	Mist.	Mist	is	an	intelligent	wallet.	If	a	private
chain	is	running	on	a	local	machine	then	it	can	identify	the	same
and	connect	to	it.	If	there	is	no	local	network	running,	then	it	will
connect	to	the	main	network	or	Rinkeby	test	network:

https://github.com/ethereum/mist/releases

However,	if	a	private	network	is	available,	it	will	connect	to	it	as
shown	in	the	following	screenshot:

Once	connected,	it	can	be	used	to	interact	with	an	Ethereum
network	by	sending	and	receiving	Ether,	and	deploying	and
invoking	functions	of	smart	contracts:

MetaMask
MetaMask	is	a	lightweight	Chrome	browser-based	extension	that
helps	in	interacting	with	Ethereum	networks.	It	is	also	a	wallet	that
helps	in	sending	and	receiving	Ether.	MetaMask	can	be	downloaded
from	https://metamask.io/.	Since	MetaMask	runs	in	a	browser,	it	does
not	download	the	entire	chaindata	locally;	instead,	it	stores	it
centrally	and	helps	users	connect	to	their	store	using	the	browser.
Let's	take	a	look	at	the	following	steps:

1.	 MetaMask	should	be	added	as	an	extension	as	shown	in	the

following	screenshot:

https://metamask.io/

2.	 Accept	the	privacy	notice	and	terms	of	use	and	a	small	icon

will	appear	next	to	the	go	button.	MetaMask	allows	you	to

connect	to	multiple	networks.	Connect	to	the	Localhost

8545	private	network	as	shown	in	the	following	screenshot:

3.	 Provide	a	password	to	create	a	new	key	that	is	used	by

MetaMask	to	identify	the	user.	It	is	stored	in	a	key	vault	at

the	MetaMask	central	server	as	shown	in	the	following

screenshot:

4.	 Click	on	the	Account	icon	and	import	all	already	created

accounts	using	the	Import	Account	menu	in	MetaMask:

5.	 After	all	the	accounts	are	created,	MetaMask	can	be	used	to

transfer	Ether	from	one	account	to	another	using	Ethereum

transactions.

6.	 For	sending	Ether	from	one	account	to	another,	select	an

account	and	click	on	the	Send	button.	On	the	resultant

window,	provide	a	target	account	address,	amount,	and	click

on	the	Next	button:

7.	 Submit	the	transaction.	The	transaction	will	be	in	a	pending

state	within	the	transaction	pool.	Mining	should	be	started

to	write	this	transaction	into	the	permanent	storage.

8.	 Start	mining	using	the	Geth	console	and	the	transaction	will

be	mined	as	shown	in	the	following	screenshot:

After	a	while	the	transaction	is	written	in	the	ledger,	and
balances	for	both	the	accounts	are	updated	in	MetaMask:

Summary
There	was	a	lot	of	substance	covered	in	this	chapter.	Ethereum
nodes	implement	JSON	RPC	endpoints	that	can	be	connected	to
using	WebSockets,	IPC,	and	RPC.	In	this	chapter,	we	discussed
various	forms	of	networks—public,	main,	test,	and	private.	The
chapter	also	discusses	and	implements	a	private	network.	This
chapter	had	steps	to	create	a	development	environment	that	will	be
used	later	in	subsequent	chapters.	This	chapter	focuses	on
deploying	multiple	tools	and	utilities	on	the	Windows	operating
system.	While	each	tool	has	its	own	working	and	functionality,
some	tools	might	eventually	do	the	same	thing.	For	example,	a
Geth-based	private	chain	and	ganache-cli	are	essentially	Ethereum
nodes	but	with	differences.	Deployment	of	Geth,	Solidity	compiler,
ganache-cli,	web3	JavaScript	framework,	Mist,	and	MetaMask	were
covered	in	this	chapter.	While	some	readers	will	like	working	with
ganache-cli,	others	will	be	interested	in	using	a	private	Geth-based
Ethereum	node.	There	is	another	important	utility	known	as	Truffle
that	will	be	covered	in	subsequent	chapters.

In	the	next	chapter,	we	will	focus	on	Solidity	as	a	language,	which	is
the	title	of	the	book.	Solidity	supports	object	orientation,	provides
both	native	as	well	as	complex	data	types,	helps	in	declaring	and
defining	functions	that	accept	parameters	and	return	values,
provides	control	structures	and	expressions,	and	many	more
features.	The	next	chapter	will	discuss	variables	and	data	types	in
depth.	The	variables	and	data	types	are	core	to	any	programming
language	and	more	so	in	Solidity	since	it	has	to	store	the	same
within	the	distributed	ledger.

Introducing	Solidity
From	this	chapter,	we	will	embark	on	a	journey:	learning	the
Solidity	language.	The	previous	two	chapters	introduced
blockchains,	Ethereum,	and	their	toolsets.	Some	important
concepts	related	to	blockchains,	which	are	essential	for	having	a
better	understanding	and	writing	efficient	code	in	Solidity,	were
also	discussed.	There	are	multiple	languages	that	target	EVM.	Some
of	them	are	deprecated	and	others	are	used	with	varying	degrees	of
acceptance.	Solidity	is	by	far	the	most	popular	language	for	EVM.
From	this	chapter	onward,	the	book	will	focus	on	Solidity	and	its
concepts,	as	well	as	constructs	to	help	write	efficient	smart
contracts.

In	this	chapter,	we	will	jump	right	into	understanding	Solidity,	its
structure,	data	types,	and	variables.	We	will	cover	the	following
topics	in	this	chapter:

Solidity	and	Solidity	files	

Structure	of	a	contract

Data	types	in	Solidity

Storage	and	memory	data	locations

Literals

Integers

Boolean

The	byte	data	type

Arrays

Structure	of	an	array

Enumeration

Address

Mappings

Ethereum	Virtual	Machine
Solidity	is	a	programming	language	targeting	Ethereum	Virtual
Machine	(EVM).	Ethereum	blockchain	helps	extend	its
functionality	by	writing	and	executing	code	known	as	smart
contracts.	We	will	get	into	the	details	of	smart	contracts	in
subsequent	chapters,	but	for	now,	it	is	enough	to	know	that	smart
contracts	are	similar	to	object-oriented	classes	written	in	Java	or
C++.

EVM	executes	code	that	is	part	of	smart	contracts.	Smart	contracts
are	written	in	Solidity;	however,	EVM	does	not	understand	the
high-level	constructs	of	Solidity.	EVM	understands	lower-level
instructions	called	bytecode.

Solidity	code	needs	a	compiler	to	take	its	code	and	convert	it	into
bytecode	that	is	understandable	by	EVM.	Solidity	comes	with	a
compiler	to	do	this	job,	known	as	the	Solidity	compiler	or	solc.	We
downloaded	and	installed	the	Solidity	compiler	in	the	last	chapter
using	the	Node.js	npm	command.	

The	entire	process	is	shown	in	the	following	diagram,	from	writing
code	in	Solidity	to	executing	it	in	EVM:

We	have	already	explored	our	first	Solidity	code	in	the	last	chapter,
when	writing	our	HelloWorld	contract.

Solidity	and	Solidity	files
Solidity	is	a	programming	language	that	is	very	close	to	JavaScript.
Similarities	between	JavaScript	and	C	can	be	found	within	Solidity.
Solidity	is	a	statically-typed,	case-sensitive,	and	object-oriented
programming	(OOP)	language.	Although	it	is	object-oriented,	it
supports	limited	objected	orientation	features.	What	this	means	is
that	variable	data	types	should	be	defined	and	known	at	compile
time.	Functions	and	variables	should	be	written	in	OOP	same	way
as	they	are	defined.	In	Solidity,	Cat	is	different	from	CAT,	cat,	or
any	other	variation	of	cat.	The	statement	terminator	in	Solidity	is
the	semicolon:	;.

Solidity	code	is	written	in	Solidity	files	that	have	the	extension	.sol.
They	are	human-readable	text	files	that	can	be	opened	as	text	files
in	any	editor	including	Notepad.

A	Solidity	file	is	composed	of	the	following	four	high-level
constructs:

Pragma

Comments

Import

Contracts/library/interface

Pragma
Pragma	is	generally	the	first	line	of	code	within	any	Solidity	file.
pragma	is	a	directive	that	specifies	the	compiler	version	to	be	used	for
current	Solidity	file.

Solidity	is	a	new	language	and	is	subject	to	continuous
improvement	on	an	on-going	basis.	Whenever	a	new	feature	or
improvement	is	introduced,	it	comes	out	with	a	new	version.	The
current	version	at	the	time	of	writing	was	0.4.19.

With	the	help	of	the	pragma	directive,	you	can	choose	the	compiler
version	and	target	your	code	accordingly,	as	shown	in	the	following
code	example:

pragma	Solidity	^0.4.19;

Although	it	is	not	mandatory,	it	is	a	good	practice	to	declare	the
pragma	directive	as	the	first	statement	in	a	Solidity	file.

The	syntax	for	the	pragma	directive	is	as	follows:

pragma	Solidity	<<version	number>>	;

Also	notice	the	case-sensitivity	of	the	directive.	Both	pragma	and
Solidity	are	in	small	letters,	with	a	valid	version	number	and
statement	terminated	with	a	semicolon.

The	version	number	comprises	of	two	numbers—a	major	build
and	a	minor	build	number.

The	major	build	number	in	the	preceding	example	is	4	and	the

minor	build	number	is	19.	Generally,	there	are	fewer	or	no	breaking
changes	within	minor	versions	but	there	could	be	significant
changes	between	major	versions.	You	should	choose	a	version	that
best	suits	your	requirements.

The	^	character,	also	known	as	caret,	is	optional	in	version
numbers	but	plays	a	significant	role	in	deciding	the	version	number
based	on	the	following	rules:

The	^	character	refers	to	the	latest	version	within	a	major

version.	So,	^0.4.0	refers	to	the	latest	version	within	build

number	4,	which	currently	would	be	0.4.19.

The	^	character	will	not	target	any	other	major	build	apart

from	the	one	that	is	provided.

The	Solidity	file	will	compile	only	with	a	compiler	with	4	as

the	major	build.	It	will	not	compile	with	any	other	major

build.

As	a	good	practice,	it	is	better	to	compile	Solidity	code	with	an	exact
compiler	version	rather	than	using	^.	There	are	changes	in	newer
version	that	could	deprecate	your	code	while	using	^	in	pragma.	For
example,	the	throw	statement	got	deprecated	and	newer	constructs
such	as	assert,	require,	and	revert	were	recommended	for	use	in	newer
versions.	You	do	not	want	to	get	surprised	on	a	day	when	your	code
starts	behaving	differently.

Comments
Any	programming	language	provides	the	facility	to	comment	code
and	so	does	Solidity.	There	are	the	following	three	types	of
comment	in	Solidity:

Single-line	comments	

Multiline	comments

Ethereum	Natural	Specification	(Natspec)

Single-line	comments	are	denoted	by	a	double	forward	slash	//,
while	multiline	comments	are	denoted	using	/*	and	*/.	Natspec	has
two	formats:	///	for	single-line	and	a	combination	of		/**	for
beginning	and	*/	for	end	of	multiline	comments.	Natspec	is	used	for
documentation	purposes	and	it	has	its	own	specification.	The	entire
specification	is	available	at	https://github.com/ethereum/wiki/wiki/Ethereum-Nat
ural-Specification-Format.

Let's	take	a	look	at	Solidity	comments	in	the	following	code:	

//	This	is	a	single-line	comment	in	Solidity

/*	This	is	a	multiline	comment

In	Solidity.	Use	this	when	multiple	consecutive	lines

Should	be	commented	as	a	whole	*/

In	Remix,	the	pragma	directive	and	comments	are	as	shown	in	the
following	screenshot:

https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format

The	import	statement
The	import	keyword	helps	import	other	Solidity	files	and	we	can
access	its	code	within	the	current	Solidity	file	and	code.	This	helps
us	write	modular	Solidity	code.

The	syntax	for	using	import	is	as	follows:

import	<<filename>>	;

File	names	can	be	fully	explicit	or	implicit	paths.	The	forward	slash
/	is	used	for	separating	directories	from	other	directories	and	files
while	.	is	used	to	refer	to	the	current	directory	and	..	is	used	to	refer
to	the	parent	directory.	This	is	very	similar	to	the	Linux	bash	way	of
referring	to	a	file.	A	typical	import	statement	is	shown	here.	Also,
note	the	semicolon	towards	the	end	of	the	statement	in	the
following	code:

import	'CommonLibrary.sol';

Contracts
Apart	from	pragma,	import,	and	comments,	we	can	define	contracts,
libraries,	and	interfaces	at	the	global	or	top	level.	We	will	explore
contracts,	libraries,	and	interfaces	in	depth	in	subsequent	chapters.
This	chapter	assumes	that	you	understand	that	multiple	contracts,
libraries,	and	interfaces	can	be	declared	within	the	same	Solidity
file.	The	library,	contract,	and	interface	keywords	shown	in	the
following	screenshot	are	case-sensitive	in	nature:

Structure	of	a	contract
The	primary	purpose	of	Solidity	is	to	write	smart	contracts	for
Ethereum.	Smart	contracts	are	the	basic	unit	of	deployment	and
execution	for	EVMs.	Although	multiple	chapters	later	in	this	book
are	dedicated	to	writing	and	developing	smart	contracts,	the	basic
structure	of	smart	contracts	is	discussed	in	this	chapter.	

Technically,	smart	contracts	are	composed	of	two	constructs—
variables	and	functions.	There	are	multiple	facets	to	both	variables
and	functions	and	that	is	again	something	that	will	be	discussed
throughout	this	book.	This	section	is	about	describing	the	general
structure	of	a	smart	contract	using	the	Solidity	language.

A	contract	consists	of	the	following	multiple	constructs:

State	variables

Structure	definitions

Modifier	definitions

Event	declarations

Enumeration	definitions

Function	definitions

A	typical	contract	consists	of	all	the	preceding	constructs.	In	the
following	screenshot,	it	is	to	be	noted	that	each	of	these	constructs
in	turn	consists	of	multiple	other	constructs,	which	will	be
discussed	in	subsequent	chapter	when	these	topics	are	discussed	in
detail:

State	variables
Variables	in	programming	refer	to	storage	location	that	can	contain
values.	These	values	can	be	changed	during	runtime.	The	variable
can	be	used	at	multiple	places	within	code	and	they	will	all	refer	to
the	value	stored	within	it.	Solidity	provides	two	types	of	variable—
state	and	memory	variables.	In	this	section,	we	will	introduce	state
variables.

One	of	the	most	important	aspects	of	Solidity	contracts	is	state
variables.	It	is	these	state	variables	that	are	permanently	stored	in	a
blockchain/Ethereum	ledger	by	miners.	Variables	declared	in	a
contract	that	are	not	within	any	function	are	called	state
variables.	State	variables	store	the	current	values	of	the	contract.
The	allocated	memory	for	a	state	variable	is	statically	assigned	and
it	cannot	change	(the	size	of	memory	allocated)	during	the	lifetime
of	the	contract.	Each	state	variable	has	a	type	that	must	be	defined
statically.	The	Solidity	compiler	must	ascertain	the	memory
allocation	details	for	each	state	variables	and	so	the	state	variable
data	type	must	be	declared.

State	variables	also	have	additional	qualifiers	associated	with	them.
They	can	be	any	one	of	the	following:	

internal:	By	default,	the	state	variable	has	the	internal	qualifier

if	nothing	is	specified.	It	means	that	this	variable	can	only	be

used	within	current	contract	functions	and	any	contract	that

inherits	from	them.	These	variables	cannot	be	accessed	from

outside	for	modification;	however,	they	can	be	viewed.	An

example	of	internal	state	variable	is	as	follows:

						int	internal	StateVariable	;

private:	This	qualifier	is	like	internal	with	additional

constraints.	Private	state	variables	can	only	be	used	in

contracts	declaring	them.	They	cannot	be	used	even	within

derived	contracts.	An	example	of	a	private	state	variable	is

as	follows:

						int	private	privateStateVariable	;

public:	This	qualifier	makes	state	variables	access	directly.

The	Solidity	compiler	generates	a	getter	function	for	each

public	state	variable.	An	example	of	a	public	state	variable	is

as	follows:

						int	public	stateIntVariable	;

constant:	This	qualifier	makes	state	variables	immutable.	The

value	must	be	assigned	to	the	variable	at	declaration	time

itself.	In	fact,	the	compiler	will	replace	references	of	this

variable	everywhere	in	code	with	the	assigned	value.	An

example	of	a	constant	state	variable	is	as	follows:

						bool	constant	hasIncome	=	true;

As	mentioned	previously,	each	state	variable	has	an	associated	data
type.	A	data	type	helps	us	determine	the	memory	requirements	for
the	variable	and	ascertain	the	values	that	can	be	stored	in	them.	For

example,	a	state	variable	of	type	uint8	also	known	as	unsigned
integer	is	allocated	a	predetermined	memory	size	and	it	can
contain	values	ranging	from	0	to	255.	Any	other	value	is	regarded	as
foreign	and	is	not	acceptable	by	compiler	and	runtime	for	storing	it
in	this	variable.

Solidity	provides	the	following	multiple	out-of-box	data	types:

bool

uint/int

bytes

address

mapping

enum

struct

bytes/String

Using	enum	and	struct,	it	is	possible	to	declare	custom	user-defined
data	types	as	well.	Later	in	this	chapter,	a	complete	section	has	been
dedicated	to	data	types	and	variables.

Structure
Structures	or	structs	helps	implement	custom	user-defined	data
types.	A	structure	is	a	composite	data	type,	consisting	of	multiple
variables	of	different	data	types.	They	are	very	similar	to	contracts;
however,	they	do	not	contain	any	code	within	them.	They	consist	of
only	variables.

There	are	times	when	you	would	like	to	store	related	data	together.
Suppose	you	want	to	store	information	about	an	employee,	say	the
employee	name,	age,	marriage	status,	and	bank	account	numbers.
To	represent	this,	these	individual	variables	related	to	single
employee,	a	structure	in	Solidity	can	be	declared	using	the	struct
keyword.	The	variables	within	a	structure	are	defined	within
opening	and	closing	{}	brackets	as	shown	in	the	following
screenshot:

To	create	an	instance	of	a	structure,	the	following	syntax	is	used.
There	is	no	need	to	explicitly	use	the	new	keyword.	The	new	keyword
can	only	be	used	to	create	an	instance	of	contracts	or	arrays	as
shown	in	the	following	screenshot:

Multiple	instance	of	struct	can	be	created	in	functions.	Structs	can
contain	array	and	the	mapping	variables,	while	mappings	and	arrays
can	store	values	of	type	struct.

Modifiers
In	Solidity,	a	modifier	is	always	associated	with	a	function.	A
modifier	in	programming	languages	refers	to	a	construct	that
changes	the	behavior	of	the	executing	code.	Since	a	modifier	is
associated	with	a	function	in	Solidity,	it	has	the	power	to	change	the
behavior	of	functions	that	it	is	associated	with.	For	easy
understanding	of	modifiers,	think	of	them	as	a	function	that	will	be
executed	before	execution	of	the	target	function.	Suppose	you	want
to	invoke	the	getAge	function	but,	before	executing	it,	you	would	like
to	execute	another	function	that	could	check	the	current	state	of	the
contract,	values	in	incoming	parameters,	the	current	value	in	state
variables,	and	so	on	and	accordingly	decide	whether	the	target
function	getAge	should	be	executed.	This	helps	in	writing	cleaner
functions	without	cluttering	them	with	validation	and	verification
rules.	Moreover,	the	modifier	can	be	associated	with	multiple
functions.	This	ensures	cleaner,	more	readable,	and	more
maintainable	code.

A	modifier	is	defined	using	the	modifier	keyword	followed	by	the
modifier	identifier,	any	parameters	it	should	accept,	and	then	code
within	the	{}	brackets.	An	_	underscore	in	a	modifier	means:	execute
the	target	function.	You	can	think	of	this	as	the	underscore	being
replaced	by	the	target	function	inline.	payable	is	an	out-of-the-box
modifier	provided	by	Solidity	which	when	applied	to	any	function
allows	that	function	to	accept	Ether.

A	modifier	keyword	is	declared	at	the	contract	level,	as	shown	in	the
following	screenshot:

As	we	can	see,	in	the	preceding	screenshot	of	the	code	snippet,	a
modifier	named	onlyBy()	is	declared	at	the	contract	level.	It	checks
the	value	of	the	incoming	address	using	msg.sender	with	an	address
stored	in	the	state	variable.	Some	things	such	as	msg.sender	might	not
be	understandable	to	readers;	we	will	cover	these	in	depth	in	the
next	chapter.	

The	modifier	is	associated	with	a	getAge	function	as	shown	in	the
following	screenshot:

The	getAge	function	can	only	be	executed	by	an	account	that	has	the
same	address	as	that	stored	in	the	contract's	_personIdentifier	state
variable.	The	function	will	not	be	executed	if	any	other	account	tries
to	invoke	it.

It	is	to	be	noted	that	anybody	can	invoke	the	getAge	function,	but
execution	will	only	happen	for	single	a	account.

Events
Solidity	supports	events.	Events	in	Solidity	are	just	like	events	in
other	programming	languages.	Events	are	fired	from	contracts	such
that	anybody	interested	in	them	can	trap/catch	them	and	execute
code	in	response.	Events	in	Solidity	are	used	primarily	for
informing	the	calling	application	about	the	current	state	of	the
contract	by	means	of	the	logging	facility	of	EVM.	They	are	used	to
notify	applications	about	changes	in	contracts	and	applications	can
use	them	to	execute	their	dependent	logic.	Instead	of	applications
they	keep	polling	the	contract	for	certain	state	changes;	the	contract
can	inform	them	by	means	of	events.

Events	are	declared	within	the	contract	at	the	global	level	and
invoked	within	its	functions.	An	event	is	declared	using	the	event
keyword,	followed	by	an	identifier	and	parameter	list	and
terminated	with	a	semicolon.	The	values	in	parameters	can	be	used
to	log	information	or	execute	conditional	logic.	Event	information
and	its	values	are	stored	as	part	of	transactions	within	blocks.	In	the
last	chapter,	while	discussing	the	properties	of	a	transaction,	a
property	named	LogsBloom	was	introduced.	Events	raised	as	part	of	a
transaction	are	stored	within	this	property.

There	is	no	need	to	explicitly	provide	parameter	variables—only
data	types	are	sufficient	as	shown	in	the	following	screenshot:

An	event	can	be	invoked	from	any	function	by	its	name	and	by
passing	the	required	parameters,	as	shown	in	the	following
screenshot:

Enumeration
The	enum	keyword	is	used	to	declare	enumerations.	Enumerations
help	in	declaring	a	custom	user-defined	data	type	in	Solidity.	enum
consists	of	an	enumeration	list,	a	predetermined	set	of	named
constants.

Constant	values	within	an	enum	can	be	explicitly	converted	into
integers	in	Solidity.	Each	constant	value	gets	an	integer	value,	with
the	first	one	having	a	value	of	0	and	the	value	of	each	successive
item	is	increased	by	1.

An	enum	declaration	uses	the	enum	keyword	followed	by	enumeration
identifier	and	a	list	of	enumeration	values	within	the	{}	brackets.	It
is	to	be	noted	that	an	enum	declaration	does	not	have	a	semicolon	as
its	terminator	and	that	there	should	be	at	least	one	member
declared	in	the	list.

An	example	of	enum	is	as	follows:

enum	gender	{male,	female}

A	variable	of	enumeration	can	be	declared	and	assigned	a	value	as
shown	in	the	following	code:

gender	_gender	=	gender.male	;

It	is	not	mandatory	to	define	enum	in	a	Solidity	contract.	enum	should
be	defined	if	there	is	a	constant	list	of	items	that	do	not	change	like
the	example	shown	previously.	These	become	good	example	for	an
enum	declaration.	They	help	make	your	code	more	readable	and
maintainable.

Functions
Functions	are	the	heart	of	Ethereum	and	Solidity.	Ethereum
maintains	the	current	state	of	state	variables	and	executes
transaction	to	change	values	in	state	variables.	When	a	function	in	a
contract	is	called	or	invoked,	it	results	in	the	creation	of	a
transaction.	Functions	are	the	mechanism	to	read	and	write	values
from/to	state	variables.	Functions	are	a	unit	of	code	that	can	be
executed	on-demand	by	calling	it.	Functions	can	accept	parameters,
execute	its	logic,	and	optionally	return	values	to	the	caller.	They	can
be	named	as	well	as	anonymous.	Solidity	provides	named	functions
with	the	possibility	of	only	one	unnamed	function	in	a	contract
called	the	fallback	function.	We	will	know	more	about	fallback
functions	later	in	the	book.

The	syntax	for	declaring	functions	in	Solidity	is	as	follows:

A	function	is	declared	using	the	function	keyword	followed	by	its
identifier—getAge,	in	this	case.	It	can	accept	multiple	comma-
separated	parameters.	The	parameter	identifiers	are	optional,	but
data	types	should	be	provided	in	the	parameter	list.	Functions	can
have	modifiers	attached,	such	as	onlyBy()	in	this	case.

There	are	a	couple	of	additional	qualifiers	that	affect	the	behavior
and	execution	of	a	function.	Functions	have	visibility	qualifiers	and
qualifiers,	related	to	what	actions	can	be	executed	within	the
function.	Both	visibility	and	function	ability-related	keywords	are
discussed	next.	Functions	can	also	return	data	and	this	information
is	declared	using	the	return	keyword,	followed	by	list	of	return
parameters.	Solidity	can	return	multiple	parameters.

Functions	has	visibility	qualifier	associated	with	them	similar	to
state	variables.	The	visibility	of	a	function	can	be	any	one	of	the
following:

public:	This	visibility	makes	function	access	directly	from

outside.	They	become	part	of	the	contracts	interface	and	can

be	called	both	internally	and	externally.

internal:	By	default,	the	state	variable	has	internal	qualifier	if

nothing	is	specified.	It	means	that	this	function	can	only	be

used	within	the	current	contract	and	any	contract	that

inherits	from	it.	These	functions	cannot	be	accessed	from

outside.	They	are	not	part	of	the	contracts	interface.

private:	Private	functions	can	only	be	used	in	contracts

declaring	them.	They	cannot	be	used	even	within	derived

contracts.	They	are	not	part	of	the	contracts	interface.

external:	This	visibility	makes	function	access	directly	from

externally	but	not	internally.	These	functions	become	part	of

the	contracts	interface.

Functions	can	also	have	the	following	additional	qualifiers	that
change	their	behavior	in	terms	of	having	the	ability	to	change
contract	state	variables:

constant:	These	functions	do	not	have	the	ability	to	modify	the

state	of	blockchain.	They	can	read	the	state	variables	and

return	back	to	the	caller,	but	they	cannot	modify	any

variable,	invoke	an	event,	create	another	contract,	call	other

functions	that	can	change	state,	and	so	on.	Think	of	constant

functions	as	functions	that	can	read	and	return	current	state

variable	values.

view:	These	functions	are	aliases	of	constant	functions.

pure:	Pure	functions	further	constraints	the	ability	of

functions.	Pure	functions	can	neither	read	and	write—in

short,	they	cannot	access	state	variables.	Functions	that	are

declared	with	this	qualifier	should	ensure	that	they	will	not

access	the	current	state	and	transaction	variables.

payable:	Functions	declared	with	the	payable	keyword	has

ability	to	accept	Ether	from	the	caller.	The	call	will	fail	in

case	Ether	is	not	provided	by	sender.	A	function	can	only

accept	Ether	if	it	is	marked	as	payable.

We	will	discuss	the	preceding	qualifiers	in	detail	in	subsequent
chapters.

Functions	can	be	invoked	by	their	names.

Data	types	in	Solidity
Solidity	data	types	can	broadly	be	classified	in	the	following	two
types:

Value	types	

Reference	types

These	two	types	in	Solidity	differ	based	on	the	way	they	are
assigned	to	a	variable	and	stored	in	EVM.	Assigning	a	variable	to
another	variable	can	be	done	by	creating	a	new	copy	or	just	by
coping	the	reference.	Value	types	maintains	independent	copies	of
variables	and	changing	the	value	in	one	variable	does	not	effect
value	in	another	variable.	However,	changing	values	in	reference
type	variables	ensures	that	anybody	referring	to	that	variables	gets
updates	value.

Value	types
A	type	is	referred	as	value	type	if	it	holds	the	data	(value)	directly
within	the	memory	owned	by	it.	These	types	have	values	stored	with
them,	instead	of	elsewhere.	The	same	is	illustrated	in	following
diagram.	In	this	example,	a	variable	of	data	type	unsigned
integer	(uint)	is	declared	with	13	as	its	data(value).	The	variable	a
has	memory	space	allocated	by	EVM	which	is	referred	as	0x123
and	this	location	has	the	value	13	stored.	Accessing	this	variable
will	provide	us	with	the	value	13	directly:

Value	types	are	types	that	do	not	take	more	than	32	bytes	of
memory	in	size.	Solidity	provides	the	following	value	types:

bool:	The	boolean	value	that	can	hold	true	or	false	as	its	value

uint:	These	are	unsigned	integers	that	can	hold	0	and

positive	values	only

int:	These	are	signed	integers	that	can	hold	both	negative

and	positive	values

address:	This	represents	an	address	of	an	account	on

Ethereum	environment

byte:	This	represents	fixed	sized	byte	array	(byte1	to	bytes32)

enum:	Enumerations	that	can	hold	predefined	constant	values

Passing	by	value
When	a	value	type	variable	is	assigned	to	another	variable	or	when
a	value	type	variable	is	sent	as	an	argument	to	a	function,	EVM
creates	a	new	variable	instance	and	copies	the	value	of	original
value	type	into	target	variable.	This	is	known	as	passing	by	value.
Changing	values	in	original	or	target	variables	will	not	affect	the
value	in	another	variable.	Both	the	variables	will	maintain	their
independent,	isolated	values	and	they	can	change	without	the	other
knowing	about	it.

Reference	types
Reference	types,	unlike	value	types,	do	not	store	their	values
directly	within	the	variabless	themselves.	Instead	of	the	value,	they
store	the	address	of	the	location	where	the	value	is	stored.	The
variable	holds	the	pointer	to	another	memory	location	that	holds
the	actual	data.	Reference	types	are	types	that	can	take	more	than
32	bytes	of	memory	in	size.	Reference	types	are	shown	next,	by
means	of	an	illustration.

In	the	following	example,	an	array	variable	of	data	type	uint	is
declared	with	size	6.	Arrays	in	Solidity	are	based	at	zero	and	so	this
array	can	hold	seven	elements.	The	variable	a	has	memory	space
allocated	by	EVM	which	is	referred	as	0x123	and	this	location	has	a
pointer	value	0x456	stored	in	it.	This	pointer	refers	to	the	actual
memory	location	where	the	array	data	is	stored.	When	accessing	the
variable,	EVM	dereferences	the	value	of	the	pointer	and	shows	the
value	from	the	array	index	as	shown	in	the	following	diagram:

Solidity	provides	the	following	reference	types:

Arrays:	These	are	fixed	as	well	as	dynamic	arrays.	Details

are	given	later	in	this	chapter.

Structs:	These	are	custom,	user-defined	structures.

String:	This	is	sequence	of	characters.	In	Solidity,	strings

are	eventually	stored	as	bytes.	Details	are	give	later	in	this

chapter.

Mappings:	This	is	similar	to	a	hash	table	or	dictionary	in

other	languages	storing	key-value	pairs.

Passing	by	reference
When	a	reference	type	variable	is	assigned	to	another	variable	or
when	a	reference	type	variable	is	sent	as	an	argument	to	a	function,
EVM	creates	a	new	variable	instance	and	copies	the	pointer	from
the	original	variable	into	the	target	variable.	This	is	known	as
passing	by	reference.	Both	the	variables	are	pointing	to	the	same
address	location.	Changing	values	in	the	original	or	target	variables
will	change	the	value	in	other	variables	also.	Both	the	variables	will
share	the	same	values	and	change	committed	by	one	is	reflected	in
the	other	variable.

Storage	and	memory	data
locations
Each	variable	declared	and	used	within	a	contract	has	a	data
location.	EVM	provides	the	following	four	data	structures	for
storing	variables:

Storage:	This	is	global	memory	available	to	all	functions

within	the	contract.	This	storage	is	a	permanent	storage	that

Ethereum	stores	on	every	node	within	its	environment.

Memory:	This	is	local	memory	available	to	every	function

within	a	contract.	This	is	short	lived	and	fleeting	memory

that	gets	torn	down	when	the	function	completes	its

execution.

Calldata:	This	is	where	all	incoming	function	execution	data,

including	function	arguments,	is	stored.	This	is	a	non-

modifiable	memory	location.

Stack:	EVM	maintains	a	stack	for	loading	variables	and

intermediate	values	for	working	with	Ethereum	instruction

set.	This	is	working	set	memory	for	EVM.	A	stack	is	1,024

levels	deep	in	EVM	and	if	it	store	anything	more	than	this	it

raises	an	exception.

The	data	location	of	a	variable	is	dependent	on	the	following	two
factors:

Location	of	variable	declaration	

Data	type	of	the	variable

Based	on	the	preceding	two	factors,	there	are	rules	that	govern	and
decide	the	data	location	of	a	variable.	The	rules	are	mentioned	here.
Data	locations	also	effect	the	way	assignment	operator	works.	Both
assignment	and	data	locations	are	explained	by	means	of	rules	that
govern	them.

Rule	1
Variables	declared	as	state	variables	are	always	stored	in	the	storage
data	location.

Rule	2
Variables	declared	as	function	parameters	are	always	stored	in	the
memory	data	location.

Rule	3
Variables	declared	within	functions,	by	default,	are	stored	in
memory	data	location.	However,	there	are	following	few	caveats:

The	location	for	value	type	variables	is	memory	within	a

function	while	the	default	for	a	reference	type	variable	is

storage.

Please	note	that	storage	is	the	default	for	reference	type	variable	declared
within	a	function.	However,	it	can	be	overridden.

By	overriding	the	default	location,	reference	types	variables

can	be	located	at	the	memory	data	location.	The	reference

types	referred	are	arrays,	structs,	and	strings.

Reference	types	declared	within	a	function	without	being

overridden	should	always	point	to	a	state	variable.

Value	type	variables	declared	in	a	function	cannot	be

overridden	and	cannot	be	stored	at	the	storage	location.

Mappings	are	always	declared	at	storage	location.	This

means	that	they	cannot	be	declared	within	a	function.	They

cannot	be	declared	as	memory	types.	However,	mappings	in

a	function	can	refer	to	mappings	declared	as	state	variables.

Rule	4
Arguments	supplied	by	callers	to	function	parameters	are	always
stored	in	a	calldata	data	location.

Rule	5
Assignments	to	state	variable	from	another	state	variable	always
creates	a	new	copy.	Two	value	type	state	variables	stateVar1	and
stateVar2	are	declared.	Within	the	getUInt	function,	stateVar2	is	assigned
to	stateVar1.	At	this	stage,	the	values	in	both	the	variables	are	40.	The
next	line	of	code	changes	the	value	of	stateVar2	to	50	and	returns
stateVar1.	The	returned	value	is	40	illustrating	that	each	variable
maintains	its	own	independent	value	a	shown	in	the	following
screenshot:

Two	array	type	state	variables,	stateArray1	and	stateArray2,	are	declared.

Within	the	getUInt	function,	stateArray2	is	assigned	to	stateArray1.	At	this
stage,	the	values	in	both	the	variables	are	the	same.	The	next	line	of
code	changes	one	of	the	values	in	stateArray2	to	5	and	returns	the
element	at	same	location	from	the	stateArray1	array.	The	returned
value	is	4,	illustrating	that	each	variable	maintains	its	own
independent	value	as	shown	in	the	following	screenshot:

Rule	6
Assignments	to	storage	variables	from	another	memory	variable
always	create	a	new	copy.

A	fixed	array	of	uint	stateArray	is	declared	as	a	state	variable.	Within
the	getUInt	function	a	local	memory	located	fixed	array	of	uint
localArray	is	defined	and	initialized.	The	next	line	of	code	assigns
localArray	to	stateArray.	At	this	stage,	the	values	in	both	the	variables
are	the	same.	The	next	line	of	code	changes	one	of	the	values	in
localArray	to	10	and	returns	the	element	at	same	location	from	the
stateArray1	array.	The	returned	value	is	2,	illustrating	that	each
variable	maintains	its	own	independent	value	as	shown	in	the
following	screenshot:

A	value	type	stateVar	state	variables	is	declared	and	initialized	with

value	20.	Within	the	getUInt	function,	a	localVar	local	variable	is
declared	with	value	40.	In	next	line	of	code,	the	localVar	local	variable
is	assigned	to	stateVar.	At	this	stage,	the	values	in	both	the	variables
are	40.	The	next	line	of	code	changes	the	value	of	localVar	to	50	and
returns	stateVar.	The	returned	value	is	40,	illustrating	that	each
variable	maintains	its	own	independent	value	as	shown	in	the
following	screenshot:

Rule	7
Assignments	to	memory	variable	from	another	state	variable	always
creates	a	new	copy.	A	value	type	state	variable,	stateVar	is	declared
and	initialized	with	value	20.	Within	the	getUInt	function	a	local
variable	of	type	uint	is	declared	and	initiated	with	value	40.	The
stateVar	variable	is	assigned	to	the	localVar	variable.	At	this	stage,	the
values	in	both	the	variables	are	20.	The	next	line	of	code	changes	the
value	of	stateVar	to	50	and	returns	localVar.	The	returned	value	is	20,
illustrating	that	each	variable	maintains	its	own	independent	value
as	shown	in	the	following	screenshot:

A	fixed	array	of	uint	stateArray	is	declared	as	state	variable.	Within
the	getUInt	function,	a	local	memory	located,	fixed	array	of	uint

localArray	is	defined	and	initialized	with	the	stateArray	variable.	At	this
stage,	the	values	in	both	the	variables	are	the	same.	The	next	line	of
code	changes	one	of	the	values	in	stateArray	to	5	and	returns	the
element	at	the	same	location	from	the	localArray1	array.	The	returned
value	is	2,	illustrating	that	each	variable	maintains	its	own
independent	value	as	shown	in	the	following	screenshot:

Rule	8
Assignments	to	a	memory	variable	from	another	memory	variable
do	not	create	a	copy	for	reference	types;	however,	they	do	create	a
new	copy	for	value	types.	The	code	listing	shown	in	the	following
screenshot	illustrates	that	value	type	variables	in	memory	are
copied	by	value.	The	value	of	localVar1	is	not	affected	by	change	in
value	of	the	localVar2	variable:

The	code	listing	shown	in	the	following	screenshot	illustrates	that
reference	type	variables	in	memory	are	copied	by	reference.	The
value	of	otherVar	is	affected	by	change	in	the	someVar	variable:

Literals
Solidity	provides	usage	of	literal	for	assignments	to	variables.
Literals	do	not	have	names;	they	are	the	values	themselves.
Variables	can	change	their	values	during	a	program	execution,	but	a
literal	remains	the	same	value	throughout.	Take	a	look	at	the
following	examples	of	various	literals:

Examples	of	integer	literal	are	1,	10,	1,000,	-1,	and	-100.

Examples	of	string	literals	are	"Ritesh"	and	'Modi'.	String

literals	can	be	in	single	or	double	quotes.

Examples	of	address	literals	are

0xca35b7d915458ef540ade6068dfe2f44e8fa733c	and

0x11.

Hexadecimal	literals	are	prefixed	with	the	hex	keyword.	An

example	of	hexadecimal	literals	is	hex"1A2B3F".

Solidity	supports	decimal	literals	with	use	of	dot.	Examples

include	4.5	and	0.2.

Integers
Integers	help	in	storing	numbers	in	contracts.	Solidity	provides	the
following	two	types	of	integer:

Signed	integers:	Signed	integers	can	hold	both	negative

and	positive	values.	

Unsigned	integers:	Unsigned	integers	can	hold	only

positive	values	along	with	zero.	They	can	also	hold	negative

values	apart	from	positive	and	zero	values.

There	are	multiple	flavors	of	integers	in	Solidity	for	each	of	these
types.	Solidity	provides	uint8	type	to	represent	8	bit	unsigned
integer	and	thereon	in	multiples	of	8	till	it	reaches	256.	In	short,
there	could	be	32	different	declarations	of	uint	with	different
multiples	of	of	8,	such	as	uint8,	uint16,	unit24,	as	far	as	uint256	bit.
Similarly,	there	are	equivalent	data	types	for	integers	such	as	int8,
int16	till	int256.

Depending	on	requirements,	an	appropriately	sized	integer	should
be	chosen.	For	example,	while	storing	values	between	0	and
255	uint8	is	appropriate,	and	while	storing	values	between	-128	to
127	int8	is	more	suitable.	For	higher	values,	larger	integers	can	be
used.

The	default	value	for	both	signed	and	unsigned	integers	is	zero,	to
which	they	are	initialized	automatically	at	the	time	of	declaration.
Integers	are	value	types;	however,	when	used	as	an	array	they	are
referred	as	reference	types.

Mathematical	operations	such	as	addition,	subtraction,
multiplication,	division,	exponential,	negation,	post-increment,	and
pre-increment	can	be	performed	on	integers.	The	following
screenshot	shows	some	of	these	examples:

Boolean
Solidity,	like	any	programming	language,	provides	a	boolean	data
type.	The	bool	data	type	can	be	used	to	represent	scenarios	that	have
binary	results,	such	as	true	or	false,	1	or	0,	and	so	on.	The	valid	values
for	this	data	type	are	true	and	false.	It	is	to	be	noted	that	bools	in
Solidity	cannot	be	converted	to	integers,	as	they	can	in	other
programming	languages.	It's	a	value	type	and	any	assignment	to
other	boolean	variables	creates	a	new	copy.	The	default	value	for
bool	in	Solidity	is	false.

A	bool	data	type	is	declared	and	assigned	a	value	as	shown	in	the
following	code:

bool	isPaid	=	true;

It	can	be	modified	within	contracts	and	can	be	used	in	both
incoming	and	outgoing	parameters	and	the	return	value,	as	shown
in	the	following	screenshot:

The	byte	data	type
Byte	refers	to	8	bit	signed	integers.	Everything	in	memory	is	stored
in	bits	consisting	of	binary	values—0	and	1.	Solidity	also	provides
the	byte	data	type	to	store	information	in	binary	format.	Generally,
programming	languages	have	a	single	data	type	for	representing
bytes.	However,	Solidity	has	multiple	flavors	of	the	byte	type.	It
provides	data	types	in	the	range	from	bytes1	to	bytes32	inclusive,	to
represent	varying	byte	lengths,	as	required.	These	are	called	fixed
sized	byte	arrays	and	are	implemented	as	value	types.	The
bytes1	data	type	represents	1	byte	and	bytes2	represents	2	bytes.	The
default	value	for	byte	is	0x00	and	it	gets	initialized	with	this	value.
Solidity	also	has	a		byte	type	that	is	an	alias	to	bytes1.

A	byte	can	be	assigned	byte	values	in	hexadecimal	format,	as
follows:

bytes1	aa	=	0x65;

A	byte	can	be	assigned	integer	values	in	decimal	format,	as	follows:

bytes1	bb	=	10;

A	byte	can	be	assigned	negative	integer	values	in	decimal	format,	as
follows:

bytes1	ee	=	-100;

A	byte	can	be	assigned	character	values	as	follows:

bytes1	dd	=	'a';

In	the	following	code	snippet,	a	value	of	256	cannot	fit	in	a	single
byte	and	needs	a	bigger	byte	array:

bytes2	cc	=	256;

The	code	listing	in	the	following	screenshot	shows	how	to	store
binary,	positive,	and	negative	integers,	and	character	literals	in
fixed	sized	byte	arrays.

We	can	also	perform	bitwise	operations	such	as	and,	or,	xor,	not,	and
left	and	right	shift	operations	on	the	byte	data	type:

Arrays
Arrays	are	discussed	as	data	types	but,	more	specifically	they	are
data	structures	that	are	dependent	on	other	data	types.	Arrays	refer
to	groups	of	values	of	the	same	type.	Arrays	help	in	storing	these
values	together	and	ease	the	process	of	iterating,	sorting,	and
searching	for	individuals	or	subsets	of	elements	within	this	group.
Solidity	provides	rich	array	constructs	that	cater	to	different	needs.

An	example	of	an	array	in	Solidity	is	as	follows:

uint[5]	intArray	;

Arrays	in	Solidity	can	be	fixed	or	dynamic.

Fixed	arrays
Fixed	arrays	refer	to	arrays	that	have	a	pre-determined	size
mentioned	at	declaration.	Examples	of	fixed	arrays	are	as	follows:

int[5]	age	;	//	array	of	int	with	5	fixed	storage	space	allocated

byte[4]	flags	;	//	array	of	byte	with	4	fixed	storage	space	allocated

Fixed	arrays	cannot	be	initialized	using	the	new	keyword.	They	can
only	be	initialized	inline,	as	shown	in	the	following	code:

int[5]	age	=	[int(10),	20,30,40,50]	;

They	can	also	be	initialized	inline	within	a	function	later,	as	follows:

int[5]	age	;

age	=	[int(10),2,3,4,5];

Dynamic	arrays
Dynamic	arrays	refer	to	arrays	that	do	not	have	a	pre-determined
size	at	the	time	of	declaration;	however,	their	size	is	determined	at
runtime.	Take	a	look	at	the	following	code:

int[]	age	;	//	array	of	int	with	no	fixed	storage	space	allocated.	Storage	is	

allocated	during	assignment

byte[]	flags	;	//	array	of	byte	with	no	fixed	storage	space	allocated

Dynamic	arrays	can	be	initialized	inline	or	using	the	new	operator.
The	initialization	can	happen	at	the	time	of	declaration	as		follows:

int[]	age	=	[int(10),	20,30,40,50]	;

int[]	age	=	new	int[](5)	;

The	initialization	can	also	happen	within	a	function	later	in	the
following	two	different	steps:

int[]	age	;

age	=	new	int[](5)	;

Special	arrays
Solidity	provides	the	following	two	special	arrays:

The	bytes	array	

The	String	array

The	bytes	array
The	bytes	array	is	a	dynamic	array	that	can	hold	any	number	of
bytes.	It	is	not	the	same	as	byte	[].	The	byte	[]	array	takes	32	bytes	for
each	element	whereas	bytes	tightly	holds	all	the	bytes	together.

Bytes	can	be	declared	as	a	state	variable	with	initial	length	size	as
shown	in	the	following	code:

bytes	localBytes	=	new	bytes(0)	;

This	can	be	also	divided	into	the	following	two	code	lines	similar	to
previously	discussed	arrays:

bytes	localBytes	;

localBytes=	new	bytes	(10)	;

Bytes	can	be	assigned	values	directly,	as	follows:

localBytes	=	"Ritesh	Modi";

Also,	values	can	be	pushed	into	it,	as	shown	in	the	following	code,	if
it	is	located	at	the	storage	location:

localBytes.push(byte(10));

Bytes	also	provide	a	read/write	length	property,	as	follows:

return	localBytes.length;	//reading	the	length	property

Take	a	look	at	the	following	code	as	well:

localBytes.length	=	4;	//setting	bytes	length	to	4	bytes

The	String	array
Strings	are	dynamic	data	types	that	are	based	on	bytes
arrays	discussed	in	the	previous	section.	They	are	very	similar	to
bytes	with	additional	constraints.	Strings	cannot	be	indexed	or
pushed	and	do	not	have	the	length	property.	To	perform	any	of	these
actions	on	string	variables,	they	should	first	be	converted	into	bytes
and	then	converted	back	to	strings	after	the	operation.

Strings	can	be	composed	of	characters	within	single	or	double
quotes.

Strings	can	be	declared	and	assigned	values	directly,	as	follows:

String	name	=	'Ritesh	Modi"	;

They	can	be	also	converted	to	bytes,	as	follows:

Bytes	byteName	=	bytes(name)	;

Array	properties
There	are	basic	properties	supported	by	arrays.	In	Solidity,	due	to
the	multiple	types	of	array,	not	every	type	supports	all	of	these
properties.

These	properties	are	as	follows:

index:	This	property	used	for	reading	individual	array

elements	is	supported	by	all	types	of	arrays,	except	for	the

string	type.	The	index	property	for	writing	to	individual	array

element	is	supported	for	dynamic	arrays,	fixed	arrays,	and

the	bytes	type	only.	Writing	is	not	supported	for	string	and

fixed	sized	byte	arrays.

push:	This	property	is	supported	by	dynamic	arrays	only.

length:	This	property	is	supported	by	all	arrays	from	read

perspective,	except	for	the	string	type.	Only	dynamic	arrays

and	bytes	support	modifying	the	length	property.

Structure	of	an	array
We	have	already	briefly	touched	on	the	topic	of	structures.
Structures	help	in	defining	custom	user-defined	data	structures.
Structures	help	in	group	multiple	variables	of	different	data	types
into	a	single	type.	A	structure	does	not	contain	any	programming
logic	or	code	for	execution;	it	just	contains	a	variable	declaration.
Structures	are	reference	types	and	are	treated	as	complex	type	in
Solidity.

Structures	can	be	defined	as	state	variables,	as	shown	in	the	next
code	illustration.	A	struct	composed	of	string,	uint,	bool,	and	uint
arrays	is	defined.	There	are	two	state	variables.	They	are	on	the
storage	location.	While	the	first	stateStructure1	state	variable	is
initialized	at	the	time	of	declaration,	the	other	stateStructure1	state
variable	is	left	to	be	initialized	later	within	a	function.

A	local	structure	at	the	memory	location	is	declared	and	initialized
within	the	getAge	function.

Another	structure	is	declared	that	acts	as	a	pointer	to
the	stateStructure	state	variable.

A	third	local	structure	is	declared	that	refers	to	the	previously
created	localStructure	local	structure.

A	change	in	one	of	the	properties	of	localStructure	is	performed	while
the	previously	declared	state	structure	is	initialized	and	finally	the
age	from	pointerLocalStructure	is	returned.	It	returns	the	new	value	that
was	assigned	to	localStructure,	as	shown	in	the	following	screenshot:

Enumerations
We	have	briefly	touched	on	the	concept	of	enumerations	while
discussing	the	layout	of	the	Solidity	file	earlier	in	this	chapter.
Enums	are	value	types	comprising	a	pre-defined	list	of	constant
values.	They	are	passed	by	values	and	each	copy	maintains	its	own
value.	Enums	cannot	be	declared	within	functions	and	are	declared
within	the	global	namespace	of	the	contract.

Predefined	constants	are	assigned	consecutively,	increasing	integer
values	starting	from	zero.

The	code	illustration	shown	next	declares	an	enum	identified	as	a
status	consisting	of	five	constant	values—created,	approved,	provisioned,
rejected,	and	deleted.	They	have	integer	values	0,	1,	2,	3,	4	assigned	to
them.

A	instance	of	enum	named	myStatus	is	created	with	an	initial	value	of
provisioned.

The	returnEnum	function	returns	the	status	and	it	returns	the	integer
value.	It	is	to	be	noted	that	web3	and	Decentralized	Applications
(DApp)	do	not	understand	an	enum	declared	within	a	contract.	They
will	get	an	integer	value	corresponding	to	the	enum	constant.

The	returnEnumInt	function	returns	an	integer	value.

The	passByValue	function	shows	that	the	enum	instance	maintains	its
own	local	copy	and	does	not	share	with	other	instances.

The	assignInteger	function	shows	an	example	where	an	integer	is
assigned	as	a	value	to	an	enum	instance:

Address
An	address	is	a	20	bytes	data	type.	It	is	specifically	designed	to	hold
account	addresses	in	Ethereum,	which	are	160	bits	or	20	bytes	in
size.	It	can	hold	contract	account	addresses	as	well	as	externally
owned	account	addresses.	Address	is	a	value	type	and	it	creates	a
new	copy	while	being	assigned	to	another	variable.

Address	has	a	balance	property	that	returns	the	amount	of	Ether
available	with	the	account	and	has	a	few	functions	for	transferring
Ether	to	accounts	and	invoking	contract	functions.

It	provides	the	following	two	functions	to	transfer	Ether:

transfer	

send

The	transfer	function	is	a	better	alternative	for	transferring	Ether	to
an	account	than	the	send	function.	The	send	function	returns	a
boolean	value	depending	on	successful	execution	of	the	Ether
transfer	while	the	transfer	function	raises	an	exception	and	returns
the	Ether	to	the	caller.

It	also	provides	the	following	three	functions	for	invoking	the
contract	function:

Call

DelegateCall	

Callcode

Mappings
Mappings	are	one	of	the	most	used	complex	data	types	in	Solidity.
Mappings	are	similar	to	hash	tables	or	dictionaries	in	other
languages.	They	help	in	storing	key-value	pairs	and	enable
retrieving	values	based	on	the	supplied	key.

Mappings	are	declared	using	the	mapping	keyword	followed	by	data
types	for	both	key	and	value	separated	by	the	=>	notation.	Mappings
have	identifiers	like	any	other	data	type	and	they	can	be	used	to
access	the	mapping.

An	example	of	mapping	is	as	follows:

Mapping	(uint	=>	address)	Names	;

In	the	preceding	code,	the	uint	data	type	is	used	for	storing	the	keys
and	the	address	data	type	is	used	for	storing	the	values.	Names	is	used	as
an	identifier	for	the	mapping.

Although	it	is	similar	to	a	hash	table	and	dictionary,	Solidity	does
not	allow	iterating	through	mapping.	A	value	from	mapping	can	be
retrieved	if	the	key	is	known.	The	next	example	illustrates	working
with	mapping.	A	counter	of	type	uint	is	maintained	in	a	contract	that
acts	as	a	key	and	address	details	are	stored	and	retrieved	with	the
help	of	functions.

To	access	any	particular	value	in	mapping,	the	associated	key
should	be	used	along	with	the	mapping	name	as	shown	here:

Names[counter]

To	store	a	value	in	mapping,	use	the	following	syntax:

Names[counter]	=	<<some	value>>

Take	a	look	at	the	following	screenshot:

Although	mapping	doesn't	support	iteration,	there	are	ways	to	work
round	this	limitation.	The	next	example	illustrates	one	of	the	ways
to	iterate	through	mapping.	Please	note	that	iterating	and	looping
are	an	expensive	operation	in	Ethereum	in	terms	of	gas	usage	and
should	generally	be	avoided.	In	this	example,	a	separate	counter	is
maintained	to	keep	track	of	the	number	of	entries	stored	within	the
mapping.	This	counter	also	acts	as	the	key	within	the	mapping.	A
local	array	can	be	constructed	for	storing	the	values	from	mapping.
A	loop	can	be	executed	using	counter	and	can	extract	and	store	each

value	from	the	mapping	into	the	local	array	as	shown	in	the
following	screenshot:

Mapping	can	only	be	declared	as	a	state	variable	whose	memory
location	is	of	type	storage.	Mapping	cannot	be	declared	within
functions	as	memory	mappings.	However,	mappings	can	be
declared	in	functions	if	they	refer	to	mappings	declared	in	state
variables,	as	shown	in	the	following	example:

Mapping	(uint	=>	address)	localNames	=	Names	;

This	is	valid	syntax	as	the	localNames	mapping	is	referring	to	the	Names
state	variable:

It	is	also	possible	to	have	nested	mapping,	that	is	mapping
consisting	of	mappings.	The	next	example	illustrates	this.	In	this
example,	there	is	an	apparent	mapping	that	maps	uint	to	another
mapping.	The	child	mapping	is	stored	as	a	value	for	the	first
mapping.	The	child	mapping	has	the	address	type	as	the	key	and
the	string	type	as	value.	There	is	a	single	mapping	identifier	and	the
child	or	inner	mapping	can	be	accessed	using	this	identifier	itself	as
shown	in	the	following	code:

mapping	(uint	=>	mapping(address	=>	string))	accountDetails;

To	add	an	entry	to	this	type	of	nested	mapping,	the	following	syntax
can	be	used:

accountDetails[counter][addressDetails]	=	names;

Here,	accountDetails	is	the	mapping	identifier	and	counter	is	the	key	for
parent	mapping.	The	accountDetails[counter]	mapping	identifier
retrieves	the	value	from	the	parent	mapping,	which	in	turn	happens
to	be	another	mapping.	Adding	the	key	to	the	returned	value,	we
can	set	the	value	for	the	inner	mapping.	Similarly,	the	value	from
the	inner	mapping	can	be	retrieved	using	the	following	syntax:

accountDetails[counter][addressDetails]

Take	a	look	at	the	following	screenshot:

Summary
This	is	the	first	chapter	that	has	explored	Solidity	in	depth.	This
chapter	introduced	Solidity,	the	layout	of	Solidity	files	including
elements	that	can	be	declared	at	the	top	level	in	it.	Constructs	li
pragma,	contracts,	and	elements	of	contracts	were	discussed	for	a
layout	perspective.	A	complete	immersion	into	the	world	of	Solidity
data	types	forms	the	core	of	this	chapter.	Value	types	and	reference
types	were	discussed	in	depth	along	with	types	like	int,	uint,	fixed
sized	byte	arrays,	bytes,	arrays,	strings,	structures,	enumerations,
addresses,	boolean,	and	mappings	were	discussed	in	great	length
along	with	examples.	Solidity	provides	additional	data	locations
from	complex	types	such	as	structs	and	arrays,	which	were	also
discussed	in	depth	along	with	rules	that	govern	their	usage.

In	the	next	chapter,	we	will	focus	on	using	some	out-of-box
variables	and	functions	of	smart	contracts.	Solidity	provides
numerous	global	variables	and	functions	to	help	ease	the	task	of
obtaining	the	current	transaction	and	block	context.	These	variables
and	function	provides	contextual	information	and	Solidity	code	and
utilizes	them	for	logic	execution.	They	play	a	very	important	role	in
authoring	enterprise-scale	smart	contracts.	

Global	Variables	and	Functions
In	Chapter	3,	Introducing	Solidity,	you	learned	about	Solidity	data
types	in	detail.	Data	types	can	be	value	or	reference	types.	Some
reference	types	such	as	structs	and	arrays	also	have	data	locations—
memory	and	storage	associated	with	them.	Variables	could	be	state
variables	or	variables	defined	locally	within	functions.	This	chapter
will	focus	on	variables,	their	scoping	rules,	declaration	and
initialization,	conversion	rules	hoisting,	and	variables	available
globally	to	all	contracts.	Some	global	functions	will	also	be
discussed	in	this	chapter.

We	will	cover	the	following	topics	in	this	chapter:

The	var	data	type

Variable	scoping

Variable	conversion

Variable	hoisting

Block	related	global	variables

Transaction	related	global	variables

Mathematical	and	cryptographic	global	functions

Addressing	related	global	variables	and	functions

Contract-related	global	variables	and	functions

The	var	type	variables
One	Solidity	type	that	was	not	discussed	in	the	last	chapter	is	the	var
data	type.	var	is	a	special	type	that	can	only	be	declared	within	a
function.	There	cannot	be	a	state	variable	in	a	contract	of	type	var.
Variables	declared	with	the	var	type	are	known	as	implicitly	typed
variable	because	var	does	not	represent	any	type	explicitly.	It
informs	the	compiler	that	its	type	is	dependent	and	determined	by
the	value	assigned	to	it	the	first	time.	Once	a	type	is	determined,	it
cannot	be	changed.

The	compiler	decides	the	final	data	type	for	the	var	variables	instead	of	a
developer	mentioning	the	type.	It	is	therefore	quite	possible	that	the	type
determined	by	the	block.difficulty	(uint)	current	block	compiler	might	not
exactly	be	the	type	expected	by	code	execution.	var	cannot	be	used	with	the
explicit	usage	of	memory	location.	An	explicit	memory	location	needs	an
explicit	variable	type.

An	example	of	var	is	shown	in	the	following	screenshot.	Variable
uintVar8	is	of	type	uint8,	variable	uintVar16	is	of	type	uint16,	variable
intVar8	is	of	type	int8	(signed	integer),	variable	intVar16	is	of	type	int16
(signed	integer),	variable	boolVar	is	of	type	bool,	variable	stringVar	is	of
type	string,	variable	bytesVar	is	of	type	bytes,	variable	arrayInteger	is	of
type	uint8	array,	and	variable	arrayByte	is	of	type	bytes10	array:

Variables	hoisting
Hoisting	a	concept	is	where	variables	need	not	be	declared	and
initialized	before	using	the	variable.	The	variable	declaration	can
happen	at	any	place	within	a	function,	even	after	using	it.	This	is
known	as	variable	hoisting.	The	Solidity	compiler	extracts	all
variables	declared	anywhere	within	a	function	and	places	them	at
the	top	or	beginning	of	a	function	and	we	all	know	that	declaring	a
variable	in	Solidity	also	initializes	them	with	their	respective	default
values.	This	ensures	that	the	variables	are	available	throughout	the
function.

In	the	following	example,	firstVar,	secondVar,	and	result	are	declared
towards	the	end	of	the	function	but	utilized	at	the	beginning	of	the
function.	However,	when	the	compiler	generates	the	bytecode	for
the	contract,	it	declares	all	variables	as	the	first	set	of	instructions	in
a	function	as	shown	in	the	following	screenshot:

Variable	scoping
Scoping	refers	to	the	availability	of	a	variable	within	a	function	and
a	contract	in	Solidity.	Solidity	provides	the	following	two	locations
where	variables	can	be	declared:

Contract-level	global	variables—also	known	as	state

variables

Function-level	local	variables

It	is	quite	easy	to	understand	function-level	local	variables.	They	are
only	available	anywhere	within	a	function	and	not	outside.

Contract-level	global	variables	are	variables	that	are	available	to	all
functions	including	constructor,	fallback,	and	modifiers	within	a
contract.	Contract-level	global	variables	can	have	a	visibility
modifier	attached	to	them.	It	is	important	to	understand	that	state
data	can	be	viewed	across	the	entire	network	irrespective	of	the
visibility	modifier.	The	following	state	variables	can	only	be
modified	using	functions:

public:	These	state	variables	are	accessible	directly	from

external	calls.	A	getter	function	is	implicitly	generated	by	the

compiler	to	read	the	value	of	public	state	variables.

internal:	These	state	variables	are	not	accessible	directly	from

external	calls.	They	are	accessible	from	functions	within	a

current	contract	and	child	contracts	deriving	from	it.

private:	These	state	variables	are	not	accessible	directly	from

external	calls.	They	are	also	not	accessible	from	functions

from	child	contracts.	They	are	only	accessible	from

functions	within	the	current	contract.

Let's	take	a	look	at	the	preceding	state	variables	in	the	following
screenshot:

Type	conversion
By	now,	we	know	that	Solidity	is	a	statically	typed	language,	where
variables	are	defined	with	specific	data	types	at	compile	time.	The
data	type	cannot	be	changed	for	the	lifetime	of	the	variable.	It
means	it	can	only	store	values	that	are	legal	for	a	data	type.	For
example,	uint8	can	store	values	from	0	to	255.	It	cannot	store
negative	values	or	values	greater	than	255.	Take	a	look	at	the
following	code	to	better	understand	this:

However,	there	are	times	when	these	conversions	are	required	to
copy	a	value	into	a	variable	of	one	type	to	another,	and	these	are
called	type	conversions.	Solidity	provides	rules	for	type
conversions.

In	Solidity,	we	can	perform	various	kinds	of	conversion	and	we	will
cover	these	in	the	following	sections.

Implicit	conversion
Implicit	conversion	means	that	there	is	no	need	for	an	operator,
or	no	external	help	is	required	for	conversion.	These	types	of
conversion	are	perfectly	legal	and	there	is	no	loss	of	data	or
mismatch	of	values.	They	are	completely	type-safe.	Solidity	allows
for	implicit	conversion	from	smaller	to	larger	integral	types.	For
example,	converting	uint8	to	uint16	happens	implicitly.

Explicit	conversion
Explicit	conversion	is	required	when	a	compiler	does	not	perform
implicit	conversion	either	because	of	loss	of	data	or	a	value
containing	data	not	falling	within	a	target	data	type	range.	Solidity
provides	a	function	for	each	value	type	for	explicit	conversion.
Examples	of	explicit	conversion	are	uint16	conversion	to	uint8.	Data
loss	is	possible	in	such	cases.

The	following	code	listing	shows	examples	for	both	implicit	and
explicit	conversions:

ConvertionExplicitUINT8toUINT256:	This	function	executed	explicit

conversion	from	uint8	to	uint256.	It	is	to	be	noted	that	this

conversion	was	also	possible	implicitly.

ConvertionExplicitUINT256toUINT8:	This	function	executed	explicit

conversion	from	uint256	to	uint8.	This	conversion	will	raise	a

compile	time	error	if	the	conversion	happened	implicitly.

ConvertionExplicitUINT256toUINT81:	This	function	shows	an

interesting	aspect	of	explicit	conversion.	Explicit

conversions	are	error-prone	and	should	generally	be

avoided.	In	this	function,	an	attempt	is	made	to	store	a	large

value	in	a	variable	of	a	smaller	data	type.	This	results	in	loss

of	data	and	unpredictability.	The	compiler	does	not	generate

an	error;	however,	it	tries	to	fit	the	value	into	smaller	value

and	goes	in	cycle	to	find	a	valid	value.

Conversions:	This	function	shows	an	example	of	implicit	and

explicit	conversions.	Some	fail	and	some	are	legal.	In	the

following	screenshot,	please	read	the	comments	beneath	the

code	to	understand	them:

Block	and	transaction	global
variables
Solidity	provides	access	to	a	few	global	variables	that	are	not
declared	within	contracts	but	are	accessible	from	code	within
contracts.	Contracts	cannot	access	the	ledger	directly.	A	ledger	is
maintained	by	miners	only;	however	Solidity	provides	some
information	about	the	current	transaction	and	block	to	contracts	so
that	they	can	utilize	them.	Solidity	provides	both	block-as	well	as
transaction-related	variables.

The	following	code	illustratesexamples	of	using	global	transaction,
block,	and	message	variables:

Transaction	and	message
global	variables
The	following	is	a	list	of	global	variables	along	with	their	data	types
and	a	description	provided	as	a	ready	reference:

Variable	name Description

block.coinbase	(address)
Same	as	etherbase.	Refers	to	the	miner's	
address.

block.difficulty	(uint) Difficulty	level	of	current	block.

block.gaslimit	(uint) Gas	limit	for	current	block.

block.number	(uint) Block	number	in	sequence.

block.timestamp	(uint) Time	when	block	was	created.

msg.data	(bytes)
Information	about	the	function	and	its	

parameters	that	created	the	transaction.

msg.gas	(uint)
Gas	unused	after	execution	of	
transaction.

msg.sender	(address)
Address	of	caller	who	invoked	the	
function.

msg.sig	(bytes4)
Function	identifier	using	first	four	bytes	
after	hashing	function	signature.

msg.value	(uint)
Amount	of	wei	sent	along	with	
transaction.

now	(uint) Current	time.

tx.gasprice	(uint)
The	gas	price	caller	is	ready	to	pay	for	
each	gas	unit.

tx.origin	(address) The	first	caller	of	the	transaction.

block.blockhash(uint	

blockNumber)	returns	

(bytes32)

Hash	of	the	block	containing	the	
transaction.

Difference	between	tx.origin
and	msg.sender
Careful	readers	might	have	noticed	in	the	previous	code	illustration
that	both	tx.origin	and	msg.sender	show	the	same	result	and	output.
The	tx.origin	global	variable	refers	to	the	original	external	account
that	started	the	transaction	while	msg.sender	refers	to	the	immediate
account	(it	could	be	external	or	another	contract	account)	that
invokes	the	function.	The	tx.origin	variable	will	always	refer	to	the
external	account	while	msg.sender	can	be	a	contract	or	external
account.	If	there	are	multiple	function	invocations	on	multiple
contracts,	tx.origin	will	always	refer	to	the	account	that	started	the
transaction	irrespective	of	the	stack	of	contracts	invoked.	However,
msg.sender	will	refer	to	the	immediate	previous	account
(contract/external)	that	invokes	the	next	contract.	It	is
recommended	to	use	msg.sender	over	tx.origin.

Cryptography	global	variables
Solidity	provides	cryptographic	functions	for	hashing	values	within
contract	functions.	There	are	two	hashing	functions—SHA2	and
SHA3.

The	sha3	function	converts	the	input	into	a	hash	based	on	the	sha3
algorithm	while	sha256	converts	the	input	into	a	hash	based	on	the
sha2	algorithm.	There	is	another	function,	keccak256,	which	is	an	alias
of	the	SHA3	algorithm.	It	is	recommended	to	use	the	keccak256	or	sha3
functions	for	hashing	needs.

The	following	screenshot	of	the	code	segment	illustrates	this:

The	result	of	executing	this	function	is	shown	in	the	following
screenshot.	The	result	of	both	the	keccak256	and	sha3	functions	is	the
same:

All	three	of	these	functions	work	on	tightly	packed	arguments,
meaning	that	multiple	parameters	can	be	concatenated	together	to
find	a	hash,	as	shown	in	the	following	code	snippet:

keccak256(97,	98,	99)

Address	global	variables
Every	address—externally	owned	or	contract-based,	has	five	global
functions	and	a	single	global	variable.	These	functions	and	variables
will	be	explored	in	depth	in	subsequent	chapters	on	Solidify
functions.	The	global	variable	related	to	the	address	is	called
balance	and	it	provides	the	current	balance	of	Ether	in	wei
available	at	the	address.

The	functions	are	as	follows:

<address>.transfer(uint256	amount):	This	function	sends	the	given

amount	of	wei	to	address,	throws	on	failure

<address>.send(uint256	amount)	returns	(bool):	This	function	sends

the	given	amount	of	wei	to	address,	and	returns	false	on	failure

<address>.call(...)	returns	(bool):	This	function	issues	a	low-level

call,	and	returns	false	on	failure

<address>.callcode(...)	returns	(bool):	This	function	issues	a	low-

level	callcode,	and	returns	false	on	failure

<address>.delegatecall(...)	returns	(bool):	This	function	issues	a

low-level	delegatecall,	and	returns	false	on	failure

Contract	global	variables
Every	contract	has	the	following	three	global	functions:

this:	The	current	contract's	type,	explicitly	convertible	to

address

selfdestruct:	This	is	an	address	recipient	that	destroys	the

current	contract,	sending	its	funds	to	the	given	address

suicide:	This	is	an	address	recipient	too	alias	to	selfdestruct

Summary
This	chapter,	in	many	ways,	was	a	continuation	of	previous
chapters.	Variables	were	discussed	in	depth	in	the	first	half	of	this
chapter.	Variable	hoisting,	type	conversions,	details	about	the	var
data	type,	and	the	scope	of	Solidity	variables	were	elaborated	on,
along	with	code	examples.	The	latter	half	of	the	chapter	focused	on
globally	available	variables	and	functions.	Transaction	and	message
related	variables,	such	as	block.coinbase,	msg.data	and	many	more,	were
explained.	The	difference	between	msg.sender	and	tx.origin	along	with
their	usage	was	also	explained	in	this	chapter.	This	chapter	also
discussed	cryptographic,	address,	and	contract-level	functions.
However,	we	will	focus	on	these	functions	in	another	chapter	later
in	this	book.

The	following	chapter	will	focus	on	Solidity	expressions	and	control
structures,	covering	programming	details	about	loops	and
conditions.	This	will	be	an	important	chapter	because	every
program	needs	some	kind	of	looping	to	perform	repetitive	tasks	and
Solidity	control	structures	help	implement	these.	Loops	are	based
on	conditions	and	conditions	are	written	using	expressions.	These
expressions	are	evaluated	and	return	either	true	or	false.	Stay	tuned
while	we	plunge	into	control	structures	and	expressions	in	the
following	chapter.

Expressions	and	Control
Structures
Taking	decisions	in	code	is	an	important	aspect	of	a	programming
language,	and	Solidity	should	also	be	able	to	execute	different
instructions	based	on	circumstances.	Solidity	provides	the	if...else
and	switch	statements	for	this	purpose.	It	is	also	important	to	loop
through	multiple	items	and	Solidity	provides	multiple	constructs
such	as	for	loops	and	while	statements	for	this	purpose.	In	this
chapter,	we	will	discuss	in	detail	the	programming	constructs	that
help	you	take	decisions	and	loop	through	a	set	of	values.

This	chapter	covers	the	following	topics:

Expressions

The	if...else	statement

The	while	statement

The	for	loop

The	break	and	continue	keywords

The	return	statement

Solidity	expressions
An	expression	refers	to	a	statement	(comprising	multiple	operands
and	optionally	zero	or	more	operators)	that	results	in	a	single	value,
object,	or	function.	The	operand	can	be	a	literal,	variable,	function
invocation,	or	another	expression	itself.

An	example	of	an	expression	is	as	follows:

Age	>	10

In	the	preceding	code,	Age	is	a	variable	and	10	is	an	integer	literal.	Age
and	10	are	operands	and	the	(>)	greater	than	symbol	is	the	operator.
This	expression	returns	a	single	boolean	value	(true	or	false)
depending	on	the	value	stored	in	Age.

Expressions	can	be	more	complex	comprising	multiple	operands
and	operators,	as	follows:

((Age	>	10)	&&	(Age	<	20))	||	((Age	>	40)	&&	(Age	<	50))

In	the	preceding	code,	there	are	multiple	operators	in	play.
The	&&	operator	acts	as	an	AND	operator	between	two	expressions,
which	in	turn	comprises	operands	and	operators.	There	is	also	an
OR	operator	represented	by	the	||	operator	between	two	complex
expressions.

Solidity	has	the	following	comparison	operators	that	help	in	writing
expressions	returning	Boolean	values:

Operator Meaning Sample	example

== Equals myVar	==	10

!= Not	equals myVar	!=	10

> Greater	than myVar	>	10

< Less	than myVar	<	10

>= Greater	than	or	equal	to myVar	>=	10

<= Less	than	or	equal	to myVar	<=	10

	

Solidity	also	provides	the	following	logical	operators	that	help	in
writing	expressions	returning	Boolean	values:

Operator Meaning Sample	example

&& AND (myVar	>	10)	&&	(myVar	<	10)

|| OR myVar	!=	10

! NOT myVar	>	10

The	following	operators	have	precedence	in	Solidity	just	like	other
languages:

Precedence Description Operator

1
Postfix	increment	and	
decrement

++,	--

New	
expression

new	<typename> NA

Array	
subscripting

<array>[<index>] NA

Member	
access

<object>.<member> NA

Function-like	
call

<func>(<args...>) NA

Parentheses (<statement>) NA

2
Prefix	increment	and	
decrement

++,	--

Unary	plus	
and	minus

+,	- NA

Unary	
operations

delete NA

Logical	NOT ! NA

Bitwise	NOT ~ NA

3 Exponentiation **

4
Multiplication,	division,	
and	modulo

*,	/,	%

5
Addition	and	
subtraction

+,	-

6 Bitwise	shift	operators <<,	>>

7 Bitwise	AND &

8 Bitwise	XOR ^

9 Bitwise	OR |

10 Inequality	operators <,	>,	<=,	>=

11 Equality	operators ==,	!=

12 Logical	AND &&

13 Logical	OR ||

14 Ternary	operator <conditional>	?	<if-true>	

:	<if-false>

15 Assignment	operators
=,	|=,	^=,	&=,	<<=,	>>=,	+=,	
-=,	*=,	/=,	%=

16 Comma	operator ,

The	if	decision	control
Solidity	provides	conditional	code	execution	with	the	help	of
the	if...else	instructions.	The	general	structure	of	if...else	is	as
follows:

if	(this	condition/expression	is	true)	{

			Execute	the	instructions	here

}	

else	if	(this	condition/expression	is	true)	{

			Execute	the	instructions	here

}	

else	{

			Execute	the	instructions	here

}

if	and	if-else		are	keywords	in	Solidity	and	they	inform	the	compiler
that	they	contain	a	decision	control	condition,	for	example,	if	(a	>
10).	Here,	if	contains	a	condition	that	can	evaluate	to	either	true	or
false.		If	a	>	10	evaluates	to	true	then	the	code	instructions	that	follow
in	the	pair	of	double-brackets	({)	and	(})	should	be	executed.

else	is	also	a	keyword	that	provides	an	alternate	path	if	none	of	the
previous	conditions	are	true.	It	also	contains	a	decision	control
instruction	and	executes	the	code	instructions	if	a	>	10	tends	to	be
true.

The	following	example	shows	the	usage	of	'IF'-'ELSE	IF'	-	'ELSE'
conditions.	An	enum	with	multiple	constants	is	declared.	A
StateManagement	function	accepts	an	uint8	argument,	which	is	converted
into	an	enum	constant	and	compared	within	the	if...else	decision
control	structure.	If	the	value	is	1	then	the	returned	result	is	1;	if	the
argument	contains	2	or	3	as	value,	then	the	else...if	portion	of	code
gets	executed;	and	if	the	value	is	other	than	1,2,	or	3	then	the	else

part	is	executed:

The	while	loop
There	are	times	when	we		need	to	execute	a	code	segment
repeatedly	based	on	a	condition.	Solidity	provides	while	loops
precisely	for	this	purpose.	The	general	form	of	the	while	loop	is	as
follows:

Declare	and	initialize	a	counter

while	(check	the	value	of	counter	using	an	expression	or	condition)	{

				Execute	the	instructions	here

				Increment	the	value	of	counter

}

while	is	a	keyword	in	Solidity	and	it	informs	the	compiler	that	it
contains	a	decision	control	instruction.	If	this	expression	evaluates
to	true	then	the	code	instructions	that	follow	in	the	pair	of	double-
brackets	{	and	}	should	be	executed.	The	while	loop	keeps	executing
until	the	condition	turns	false.	

In	the	following	example,	mapping	is	declared	along	with	counter.	counter
helps	loop	the	mapping	since	there	is	no	out-of-the-box	support	in
Solidity	to	loop	mapping.

An	event	is	used	to	get	details	about	transaction	information.	We
will	discuss	events	in	detail	in	the	Events	and	Logging	section	in	Cha
pter	8,	Exceptions,	Events,	and	Logging.	For	now,	it	is	enough	to
understand	that	you	are	logging	information	whenever	an	event	is
invoked.	The	SetNumber	function	adds	data	to	mapping	and
the	getnumbers	function	runs	a	while	loop	to	retrieve	all	entries	within
the	mapping	and	log	them	using	events.

A	temporary	variable	is	used	as	a	counter	that	is	incremented	by	1	at	every
execution	of	the	while	loop.

The	while	condition	checks	the	value	of	the	temporary	variable	and
compares	it	with	the	global	counter	variable.	Based	on	whether	it's
true	or	false,	the	code	within	the	while	loop	is	executed.	Within	this
set	of	instructions,	the	value	of	a	counter	should	be	modified	so	that
it	can	help	to	exit	the	loop	by	making	the	while	condition	false	as
shown	in	the	following	screenshot:

The	for	loop
One	of	the	most	famous	and	most	used	loops	is	the	for	loop,	and	we
can	use	it	in	Solidity.	The	general	structure	of	a	for	loop	is	as
follows:

for	(initialize	loop	counter;	check	and	test	the	counter;	increase	the	value	

of	counter;)	{

					Execute	multiple	instructions	here

		}

for	is	a	keyword	in	Solidity	and	it	informs	the	compiler	that	it
contains	information	about	looping	a	set	of	instructions.	It	is	very
similar	to	the	while	loop;	however	it	is	more	succinct	and	readable
since	all	information	can	be	viewed	in	a	single	line.

The	following	code	example	shows	the	same	solution:	looping
through	a	mapping.	However,	it	uses	the	for	loop	instead	of	the	while
loop.	The	i	variable	is	initialized,	incremented	by	1	in	every	iterator,
and	checked	to	see	whether	it	is	less	than	the	value	of	counter.	The
loop	will	stop	as	soon	as	the	condition	becomes	false;	that	is,	the
value	of	i	is	equal	to	or	greater	than	counter:

The	do...while	loop
The	do...while	loop	is	very	similar	to	the	while	loop.	The	general	form
of	a	do...while	loop	is	as	follows:

Declare	and	Initialize	a	counter

do	{

Execute	the	instructions	here

Increment	the	value	of	counter

}	while(check	the	value	of	counter	using	an	expression	or	condition)

There	is	a	subtle	difference	between	the	while	and	do...while	loops.	If
you	notice,	the	condition	in	do...while	is	placed	towards	the	end	of
the	loop	instructions.	The	instructions	in	the	while	loop	is	not
executed	at	all	if	the	condition	is	false;	however,	the	instruction	in
the	do...while	loop	get	executed	once,	before	the	condition	is
evaluated.	So,	if	you	want	to	execute	the	instructions	at	least	once,
the	do...while	loop	should	be	preferred	compared	to	the	while	loop.
Take	a	look	at	the	following	screenshot	of	a	code	snippet:

The	break	statement
Loops	help	iterateing	over	from	the	start	till	it	arives	on	a	vector
data	type.	However,	there	are	times	when	you	would	like	to	stop	the
iteration	in	between	and	jump	out	or	exit	from	the	loop	without
executing	the	conditional	test	again.	The	break	statement	helps	us	do
that.	It	helps	us	terminate	the	loop	by	passing	the	control	to	the	first
instruction	after	the	loop.

In	the	following	screenshot	example,	the	for	loop	is	terminated	and
control	moves	out	of	the	for	loop	when	the	value	of	i	is	1	because	of
the	use	of	the	break	statement.	It	literally	breaks	the	loop	as	shown	in
the	following	screenshot:

The	continue	statement
Loops	are	based	on	expressions.	The	logic	of	the	expression	decides
the	continuity	of	the	loop.	However,	there	are	times	when	you	are	in
between	loop	execution	and	would	like	to	go	back	to	the	first	line	of
code		without	executing	the	rest	of	the	code	for	the	next	iteration.
The	continue	statement	helps	us	do	that.

In	the	following	screenshot,	the	for	loop	is	executed	till	the	end;
however	the	values	after	5	are	not	logged	at	all:

The	return	statement
Returning	data	is	an	integral	part	of	a	Solidity	function.	Solidity
provides	two	different	syntaxes	for	returning	data	from	a	function.
In	the	following	code	sample,	two	functions—getBlockNumber	and
getBlockNumber1—are	defined.	The	getBlockNumber	function	returns	a	uint
without	naming	the	return	variable.	In	such	cases,	developers	can
resort	to	using	the	return	keyword	explicitly	to	return	from	the
function.

The	getBlockNumber1	function	returns	uint	and	also	provides	a	name	for
the	variable.	In	such	cases,	developers	can	directly	use	and	return
this	variable	from	a	function	without	using	the	return	keyword	as
shown	in	the	following	screenshot:

Summary
Expressions	and	control	structures	are	an	integral	part	of	any
programming	language	and	they	are	an	important	element	of	the
Solidity	language	as	well.	Solidity	provides	a	rich	infrastructure	for
decision	and	looping	constructs.	It	provides	if...else	decision
control	structures	and	the	for,	do...while,	and	while	loops	for	looping
over	data	variables	that	can	be	iterated.	Solidity	also	allows	us	to
write	conditions	and		logical,	assignment,	and	other	types	of
statement	any	that	programming	language	supports.

The	following	chapter	will	discuss	Solidity	and	contract	functions	in
detail;	these	are	core	elements	for	writing	contracts.	Blockchain	is
about	executing	and	storing	transactions	and	transactions	are
created	when	contract	functions	are	executed.	Functions	can
change	the	state	of	Ethereum	or	just	return	the	current	state.
Functions	that	change	state	and	those	that	return—current	state
will	be	discussed	in	detail	in	the	following	chapter.

Writing	Smart	Contracts
Solidity	is	used	to	author	smart	contracts.	This	chapter	is	dedicated
to	smart	contracts.	It	is	from	here	that	you	will	start	writing	smart
contracts.	This	chapter	will	discuss	the	design	aspects	of	writing
smart	contracts,	defining	and	implementing	a	contract,	and
deploying	and	creating	contracts	using	different	mechanisms—
using	new	keywords	and	known	addresses.	Solidity	provides	rich
object	orientation	and	this	chapter	will	delve	deep	into	object-
oriented	concepts	and	implementations,	such	as	inheritance,
multiple	inheritance,	declaring	abstract	classes	and	interfaces,	and
providing	method	implementations	to	abstract	functions	and
interfaces.

This	chapter	covers	the	following	topics:

Creating	contracts

Creating	contracts	via	new

Inheritance

Abstract	contracts

Interfaces

Smart	contracts
What	are	smart	contracts?	Everybody	bears	an	expression	trying	to
understand	the	meaning	of	contracts	and	the	significance	of	the
word	"smart"	in	reference	to	contracts.	Smart	contracts	are,
essentially,	code	segments	or	programs	that	are	deployed	and
executed	in	EVM.	A	contract	is	a	term	generally	used	in	the	legal
world	and	has	little	relevance	in	the	programming	world.	Writing	a
smart	contract	in	Solidity	does	not	mean	writing	a	legal	contract.
Moreover,	contracts	are	like	any	other	programming	code,
containing	Solidity	code,	and	are	executed	when	someone	invokes
them.	There	is	inherently	nothing	smart	about	it.	A	smart	contract
is	a	blockchain	term;	it	is	a	piece	of	jargon	used	to	refer	to
programming	logic	and	code	that	executes	within	EVM.

A	smart	contract	is	very	similar	to	a	C++,	Java,	or	C#	class.	Just	as	a
class	is	composed	of	state	(variables)	and	behaviors	(methods),
contracts	contain	state	variables	and	functions.	The	purpose	of	state
variables	is	to	maintain	the	current	state	of	the	contract,	and
functions	are	responsible	for	executing	logic	and	performing	update
and	read	operations	on	the	current	state.

We	have	already	seen	some	examples	of	smart	contracts	in	the
previous	chapter;	however,	it's	time	to	dive	deeper	into	the	subject.

Writing	a	simple	contract
A	contract	is	declared	using	the	contract	keyword	along	with	an
identifier,	as	shown	in	the	following	code	snippet:

contract	SampleContract	{

}

Within	the	brackets	comes	the	declaration	of	state	variables	and
function	definitions.	A	complete	definition	of	contract	was
discussed	in	Chapter	3,	Introducing	Solidity,	and	I	am	providing	it
again	for	quick	reference.	This	contract	has	state	variables,	struct
definitions,	enum	declarations,	function	definitions,	modifiers,	and
events.	State	variables,	structs,	and	enums	were	discussed	in	detail
in	Chapter	4,	Global	Variables	and	Functions.	Functions,	modifiers,
and	events	will	be	discussed	in	detail	over	the	next	two	chapters.
Take	a	look	at	the	following	screenshot	of	a	code	snippet	depicting
contract:

http://global

Creating	contracts
There	are	the	following	two	ways	of	creating	and	using	a	contract	in
Solidity:

Using	the	new	keyword

Using	the	address	of	the	already	deployed	contract

Using	the	new	keyword
The	new	keyword	in	Solidity	deploys	and	creates	a	new	contract
instance.	It	initializes	the	contract	instance	by	deploying	the
contract,	initializing	the	state	variables,	running	its	constructor,
setting	the	nonce	value	to	one,	and,	eventually,	returns	the	address	of
the	instance	to	the	caller.	Deploying	a	contract	involves	checking
whether	the	requestor	has	provided	enough	gas	to	complete
deployment,	generating	a	new	account/address	for	contract
deployment	using	the	requestor's	address	and	nonce	value,	and	passing
on	any	Ether	sent	along	with	it.

In	the	next	screenshot,	two	contracts,	HelloWorld	and	client,	are
defined.	In	this	scenario,	one	contract	(client)	deploys	and	creates	a
new	instance	of	another	contract	(HelloWorld).	It	does	so	using	the	new
keyword	as	shown	in	the	following	code	snippet:

HelloWorld	myObj	=	new	HelloWorld();

Let's	take	a	look	at	the	following	screenshot:	

Using	address	of	a	contract
This	method	of	creating	a	contract	instance	is	used	when	a	contract
is	already	deployed	and	instantiated.	This	method	of	creating	a
contract	uses	the	address	of	an	existing,	deployed	contract.	No	new
instance	is	created;	rather,	an	existing	instance	is	reused.	A
reference	to	the	existing	contract	is	made	using	its	address.

In	the	next	code	illustration,	two	contracts,	HelloWorld	and	client,	are
defined.	In	this	scenario,	one	contract(client)	uses	an	already	known
address	of	another	contract	to	create	a	reference	to	it	(HelloWorld).	It
does	so	using	the	address	data	type	and	casting	the	actual	address	to
the	HelloWorld	contract	type.	The	myObj	object	contains	the	address	of
an	existing	contract,	as	shown	in	the	following	code	snippet:

HelloWorld	myObj	=	HelloWorld(obj);

Let's	take	a	look	at	the	following	screenshot:

Constructors
Solidity	supports	declaring	a	constructor	within	a	contract.
Constructors	are	optional	in	Solidity	and	the	compiler	induces	a
default	constructor	when	no	constructor	is	explicitly	defined.	The
constructor	is	executed	once	while	deploying	the	contract.	This	is
quite	different	from	other	programming	languages.	In	other
programming	languages,	a	constructor	is	executed	whenever	a	new
object	instance	is	created.	However,	in	Solidity,	a	constructor	is
executed	are	deployed	on	EVM.	Constructors	should	be	used	for
initializing	state	variables	and,	generally,	writing	extensive	Solidity
code	should	be	avoided.	The	constructor	code	is	the	first	set	of	code
that	is	executed	for	a	contract.	There	can	be	at	most	one	constructor
in	a	contract,	unlike	constructors	in	other	programming	languages.
Constructors	can	take	parameters	and	arguments	should	be
supplied	while	deploying	the	contract.

A	constructor	has	the	same	name	as	that	of	the	contract.	Both	the
names	should	be	the	same.	A	constructor	can	be	either	public	or
internal,	from	a	visibility	point	of	view.	It	cannot	be	external	or	private.
A	constructor	does	not	return	any	data	explicitly.	In	the	following
example,	a	constructor	with	the	same	name	as	that	of
the	HelloWorld	contract	is	defined.	It	sets	the	storage	variable	value	to
5,	as	shown	in	the	following	screenshot:

Contract	composition
Solidity	supports	contract	composition.	Composition	refers	to
combining	multiple	contracts	or	data	types	together	to	create
complex	data	structures	and	contracts.	We	have	already	seen
numerous	examples	of	contract	composition	before.	Refer	to	the
code	snippet	for	creating	contracts	using	the	new	keyword	shown
earlier	in	this	chapter.	In	this	example,	the	client	contract	is
composed	of	the	HelloWorld	contract.	Here,	HelloWorld	is	an	independent
contract	and	client	is	a	dependent	contract.	client	is	a	dependent
contract	because	it	is	dependent	on	the	HelloWorld	contract	for	its
completeness.	It	is	a	good	practice	to	break	down	problems	into
multi-contract	solutions	and	compose	them	together	using	contract
composition.

Inheritance
Inheritance	is	one	of	the	pillars	of	object	orientation	and	Solidity
supports	inheritance	between	smart	contracts.	Inheritance	is	the
process	of	defining	multiple	contracts	that	are	related	to	each	other
through	parent-child	relationships.	The	contract	that	is	inherited	is
called	the	parent	contract	and	the	contract	that	inherits	is	called
the	child	contract.	Similarly,	the	contract	has	a	parent	known	as
the	derived	class	and	the	parent	contract	is	known	as	a	base
contract.	Inheritance	is	mostly	about	code-reusability.	There	is	a
is-a	relationship	between	base	and	derived	contracts	and	all	public
and	internal	scoped	functions	and	state	variables	are	available	to
derived	contracts.	In	fact,	Solidity	compiler	copies	the	base	contract
bytecode	into	derived	contract	bytecode.	The	is	keyword	is	used	to
inherit	the	base	contract	in	the	derived	contract.

It	is	one	of	the	most	important	concepts	that	should	be	mastered	by
every	Solidity	developer	because	of	the	way	contracts	are	versioned
and	deployed.

Solidity	supports	multiple	types	of	inheritance,	including	multiple
inheritance.

Solidity	copies	the	base	contracts	into	the	derived	contract	and	a
single	contract	is	created	with	inheritance.	A	single	address	is
generated	that	is	shared	between	contracts	in	a	parent-child
relationship.

Single	inheritance
Single	inheritance	helps	in	inheriting	the	variables,	functions,
modifiers,	and	events	of	base	contracts	into	the	derived	class.	Take
a	look	at	the	following	diagram:

The	next	code	snippets	help	to	explain	single	inheritance.	You	will
observe	that	there	are	two	contracts,	ParentContract	and	ChildContract.
The	ChildContract	contract	inherits	from	ParentContract.	ChildContract	will
inherit	all	public	and	internal	variables	and	functions.	Anybody
using	ChildContract,	as	seen	in	the	client	contract,	can	invoke	both
GetInteger	and	SetInteger	functions	as	if	they	were	defined	in
ChildContract,	as	shown	in	the	following	screenshot:

All	functions	in	Solidity	contracts	are	virtual	and	are	based	on
contract	instance.	An	appropriate	function—either	in	the	base	or
derived	class	is	invoked.	This	topic	is	known	as	polymorphism
and	is	covered	in	a	later	section	in	this	chapter.

The	order	of	invocation	of	the	contract	constructor	is	from	the	base
most	contract	to	the	derive	most	contract.

Multi-level	inheritance
Multi-level	inheritance	is	very	similar	to	single	inheritance;
however,	instead	of	just	a	single	parent-child	relationship,	there	are
multiple	levels	of	parent-child	relationship.

This	is	shown	in	the	following	diagram.	Contract	A	is	the	parent	of
Contract	B	and	Contract	B	is	the	parent	of	Contract	C:

Hierarchical	inheritance
Hierarchical	inheritance	is	again	similar	to	simple	inheritance.
Here,	however,	a	single	contract	acts	as	a	base	contract	for	multiple
derived	contracts.	This	is	shown	in	the	following	diagram.	Here,
Contract	A	is	derived	in	both	Contract	B	and	Contract	C:

Multiple	inheritance
Solidity	supports	multiple	inheritance.	There	can	be	multiple	levels
of	single	inheritance.	However,	there	can	also	be	multiple	contracts
that	derive	from	the	same	base	contract.	These	derived	contracts
can	be	used	as	base	contracts	together	in	further	child	classes.
When	contracts	inherit	from	such	child	contracts	together,	there	is
multiple	inheritance,	as	shown	in	the	following	diagram:

The	next	screenshot	shows	an	example	of	multiple	inheritance.	In
this	example,	SumContract	acts	as	a	base	contract	that	is	derived	into
the	MultiContract	and	DivideContract	contracts.	The	SumContract		contract
provides	an	implementation	for	the	Sum	function	and	the	MultiContract
and	DivideContract	contracts	provide	an	implementation	of	the	Multiply
and	Divide	functions,	respectively.	Both	MultiContract	and	DivideContract
are	inherited	in	SubContract.	The	SubContract	contract	provides	an

implementation	of	the	Sub	function.	The	client	contract	is	not	a	part
of	the	parent-child	hierarchy	and	is	consuming	other	contracts.	The
client	contract	creates	an	instance	of	SubContract	and	calls	the	Sum
method	on	it.

Solidity	follows	the	path	of	Python	and	uses	C3	Linearization,
also	known	as	Method	Resolution	Order	(MRO),	to	force	a
specific	order	in	graphs	of	base	contracts.	The	contracts	should
follow	a	specific	order	while	inheriting,	starting	from	the	base
contract	through	to	the	most	derived	contract.	An	example	of	such
sequencing	is	shown	next,	in	which	the	SubContract	contract	is	derived
from	SumContract,	DivideContract,	and	MultiContract.

The	following	screenshot	of	the	code	example	shows	that	MultiContract
is	an	immediate	parent	contract	for	the	SubContract	contract,	followed
by	DivideContract	and	SumContract:

It	is	also	possible	to	invoke	a	function	specific	to	a	contract	by	using
the	contract	name	along	with	the	function	name.

Encapsulation
Encapsulation	is	one	of	the	most	important	pillars	of	OOP.
Encapsulation	refers	to	the	process	of	hiding	or	allowing	access	to
state	variables	directly	for	changing	their	state.	It	refers	to	the
pattern	of	declaring	variables	that	cannot	be	accessed	directly	by
clients	and	can	only	be	modified	using	functions.	This	helps	in
constraint	access	to	variables	but,	at	the	same	time,	allows	enough
access	to	class	for	taking	action	on	it.	Solidity	provides	multiple
visibility	modifiers	such	as		external,	public,	internal,	and	private	that
affects	the	visibility	of	state	variables	within	the	contract	in	which
they	are	defined,	inheriting	child	contracts	or	outside	contracts.

Polymorphism
Polymorphism	means	having	multiple	forms.	There	are	the
following	two	types	of	polymorphism:

Function	polymorphism

Contract	polymorphism

Function	polymorphism
Function	polymorphism	refers	to	declaring	multiple	functions
within	the	same	contract	or	inheriting	contracts	having	the	same
name.	The	functions	differ	in	the	parameter	data	types	or	in	the
number	of	parameters.	Return	types	are	not	taken	into
consideration	for	determining	valid	function	signatures	for
polymorphism.	This	is	also	known	as	method	overloading.

The	next	code	segment	illustrates	a	contract	that	contains	two
functions,	which	have	the	same	name	but	different	data	types	for
incoming	parameters.	The	first	function,	getVariableData,	accepts	int8
as	its	parameter	data	type,	while	the	next	function	having	the	same
name	accepts	int16	as	its	parameter	data	type.	It	is	absolutely	legal	to
have	the	same	function	name	with	a	different	number	of
parameters	of	different	data	types	for	incoming	parameters	as
shown	in	the	following	screenshot:

Contract	polymorphism
Contract	polymorphism	refers	to	using	multiple	contract	instances
interchangeably	when	the	contracts	are	related	to	each	other	by	way
of	inheritance.	Contract	polymorphism	helps	in	invoking	derived
contract	functions	using	a	base	contract	instance.

Let's	understand	this	concept	with	the	help	of	code	listing	shown
next.

A	parent	contract	contains	two	functions,	SetInteger	and	GetInteger.	A
child	contract	inherits	from	a	parent	contract	and	provides	its	own
implementation	of	GetInteger.	The	child	contract	can	be	created	using
the	ChildContract	variable	data	type	and	it	can	also	be	created	using
the	parent	contract	data	type.	Polymorphism	allows	the	use	of	any
contract	in	a	parent-child	relationship	with	the	base	type	contract
variable.	The	contract	instance	decides	which	function	will	be
invoked—the	base	or	derived	contract.

Take	a	look	at	the	following	code	snippet:

ParentContract	pc	=	new	ChildContract();

The	preceding	code	creates	a	child	contract	and	stores	the	reference
in	the	parent	contract	type	variable.	This	is	how	contract
polymorphism	is	implemented	in	Solidity	as	shown	in	the	following
screenshot:

Method	overriding
Method	overriding	refers	to	redefining	a	function	available	in	the
parent	contract	having	the	same	name	and	signature	in	the	derived
contract.	The	next	code	segment	shows	this.	A	parent	contract
contains	two	functions,	SetInteger	and	GetInteger.	A	child	contract
inherits	from	the	parent	contract	and	provides	its	own
implementation	of	GetInteger	by	overriding	the	function.

Now,	when	a	call	to	the	GetInteger	function	is	made	on	the	child
contract	even	while	using	a	parent	contract	variable,	the	child
contract	instance	function	is	invoked.	This	is	because	all	functions
in	contracts	are	virtual	and	based	on	contract	instance;	the	most
derived	function	is	invoked,	as	shown	in	the	following	screenshot:

Abstract	contracts
Abstracts	contracts	are	contracts	that	have	partial	function
definitions.	You	cannot	create	an	instance	of	an	abstract	contract.
An	abstract	contract	must	be	inherited	by	a	child	contract	for
utilizing	its	functions.	Abstract	contracts	help	in	defining	the
structure	of	a	contract	and	any	class	inheriting	from	it	must	ensure
to	provide	an	implementation	for	them.	If	the	child	contract	does
not	provide	the	implementation	for	incomplete	functions,	even	its
instance	cannot	be	created.	The	function	signatures	terminate	using
the	semicolon,	;,	character.	There	is	no	Solidity-provided	keyword
to	mark	a	contract	as	abstract.	A	contract	becomes	an	abstract	class
if	it	has	functions	without	implementation.

The	screenshot	shown	next	is	an	implementation	of	an	abstract
contract.	The	abstractHelloWorld	contract	is	an	abstract	contract	as	it
contains	a	couple	of	functions	without	any	definitions.	GetValue	and
SetValue	are	function	signatures	without	any	implementation.	There
is	another	method	that	returns	a	constant.	The	purpose	of	AddaNumber
is	to	show	that	there	can	be	functions	within	an	abstract	contract
containing	implementation	as	well.	The	abstractHelloWorld	abstract
contract	is	inherited	by	the	HelloWorld	contract	that	provides
implementation	for	all	the	methods.	The	client	contract	creates	an
instance	of	the	HelloWorld	contract	using	the	base	contract	variable
and	invokes	its	functions	as	shown	in	the	following	screenshot:

Interfaces
Interfaces	are	like	abstract	contracts,	but	there	are	differences.
Interfaces	cannot	contain	any	definition.	They	can	only	contain
function	declarations.	It	means	functions	in	interfaces	cannot
contain	any	code.	They	are	also	known	as	pure	abstract	contracts.
An	interface	can	contain	only	the	signature	of	functions.	It	also
cannot	contain	any	state	variables.	They	cannot	inherit	from	other
contracts	or	contain	enums	or	structures.	However,	interfaces	can
inherit	other	interfaces.	The	function	signatures	terminate	using	the
semicolon	;	character.	Interfaces	are	declared	using	the	interface
keyword	following	by	an	identifier.	The	next	code	example	shows	an
implementation	of	the	interface.	Solidity	provides	the	interface
keyword	for	declaring	interfaces.	The	IHelloWorld	interface	is	defined
containing	two	function	signatures—GetValue	and	SetValue.	There	are
no	functions	containing	any	implementation.	IHelloWorld	is
implemented	by	the	HelloWorld	contract.	Contract	intent	to	use	this
contract	would	create	an	instance	as	it	would	do	normally	as	shown
in	the	following	screenshot:

Summary
This	brings	us	to	the	end	of	this	chapter.	It	was	a	heavy	chapter	that
focused	primarily	on	smart	contracts,	the	different	ways	to	create
an	instance,	and	all	the	important	object-oriented	concepts	related
to	them,	including	inheritance,	polymorphism,	abstraction,	and
encapsulation.	Multiple	types	of	inheritance	can	be	implemented	in
Solidity.	Simple,	multiple,	hierarchical,	and	multi-level	inheritance
were	discussed,	along	with	usage	and	implementation	of	abstract
contracts	and	interfaces.	It	should	be	noted	that	using	inheritance
in	Solidity,	there	is	eventually	just	one	contract	that	is	deployed
instead	of	multiple	contracts.	There	is	just	one	address	that	can	be
used	by	any	contract	with	a	parent-child	hierarchy.

The	next	chapter	will	focus	purely	on	functions	within	contracts.
Functions	are	central	to	writing	effective	Solidity	contracts.	These
are	functions	that	help	change	the	contract	state	and	retrieve	them.
Without	functions,	having	any	meaningful	smart	contracts	is
difficult.	Functions	have	different	visibility	scope,	multiple
attributes	are	available	that	affect	their	behavior,	and	also	help	in
accepting	Ether.	Stay	tuned	for	a	function	ride	in	the	next	chapter!

Functions,	Modifiers,	and
Fallbacks
Solidity	is	maturing	and	providing	advanced	programming
constructs	so	that	users	can	write	better	smart	contracts.	This
chapter	is	dedicated	to	some	of	the	most	important	smart	contract
constructs,	such	as	functions,	modifiers,	and	fallbacks.	Functions
are	the	most	important	element	of	a	smart	contract	after	state
variables.	It	is	functions	that	help	to	create	transactions	and
implement	custom	logic	in	Ethereum.	There	are	various	types	of
functions,	which	will	be	discussed	in	depth	in	this	chapter.
Modifiers	are	special	functions	that	help	in	writing	more	readily
available	and	modular	smart	contracts.	Fallbacks	are	a	concept
unique	to	contract-based	programming	languages,	and	they	are
executed	when	a	function	call	does	not	match	any	existing	declared
method	in	the	contract.	Finally,	every	function	has	visibility
attached	to	it	that	affects	its	availability	to	the	external	caller,	other
contracts,	and	contracts	in	inheritance.

This	chapter	covers	the	following	topics:

Input	parameters	and	output	parameters

Returning	multiple	parameters

View	functions

Pure	functions

Scopes	and	declarations

Visibility	and	getters

Internal	function	calls

External	function	calls

Modifiers

Fallback	functions

Function	input	and	output
Functions	would	not	be	that	interesting	if	they	didn't	accept
parameters	and	return	values.	Functions	are	made	generic	with	the
use	of	parameters	and	return	values.	Parameters	can	help	in
changing	function	execution	and	providing	different	execution
paths.	Solidity	allows	you	to	accept	multiple	parameters	within	the
same	function;	the	only	condition	is	that	their	identifiers	should	be
uniquely	named.

The	following	code	snippets	show	the	following	multiple	functions,
each	with	different	constructs	for	parameters	and	return	values:

1.	 The	first	function,	singleIncomingParameter,	accepts	one

parameter	named	_data	of	type	int	and	returns	a	single	return

value	that	is	identified	using	_output	of	type	int.	The	function

signature	provides	constructs	to	define	both	the	incoming

parameters	and	return	values.	The	return	keyword	in	the

function	signature	helps	define	the	return	types	from	the

function.	In	the	following	code	snippet,	the	return	keyword

within	the	function	code	automatically	maps	to	the	first

return	type	declared	in	the	function	signature:

					function	singleIncomingParameter(int	_data)	returns	(int		

					_output)	{

									return	_data	*	2;

					}

2.	 The	second	function,	multipleIncomingParameter,	accepts	two

parameters:	_data	and	_data2,	which	are	both	of	type	int	and

return	a	single	return	value	identified	using		_output	of	type

int,	as	follows:

				function	multipleIncomingParameter(int	_data,	int	_data2)		

				returns	(int	_output)	{

									return	_data	*	_data2;

					}

3.	 The	third	function,	multipleOutgoingParameter,	accepts	one

parameter,	_data,	of	type	int	and	returns	two	return	values

identified	using	square	and	half,	which	are	both	of	type	int.	In

the	following	code	snippet,	returning	multiple	parameters	is

something	unique	to	Solidity	and	is	not	found	in	many

programming	languages:

				function	multipleOutgoingParameter(int	_data)	returns	(int	

				square,	int	half)				

					{

									square	=	_data	*	_data;

									half	=	_data	/2	;

					}

4.	 The	fourth	function,	multipleOutgoingTuple,	is	similar	to	the	third

function	mentioned	previously.	However,	instead	of

assigning	return	values	as	separate	statements	and

variables,	it	returns	values	as	a	tuple.	A	tuple	is	a	custom

data	structure	consisting	of	multiple	variables,	as	shown	in

the	following	code	snippet:

				function	multipleOutgoingTuple(int	_data)	returns	(int	square,	

				int	half)		

					{

									(square,	half)	=	(_data	*	_data,_data	/2);

					}

The	entire	contract	code	is	shown	in	the	following
screenshot:

It	is	also	possible	to	declare	parameters	without	any	identifier	at	all.
This	feature	does	not	have	much	utility,	however,	as	those
parameters	cannot	be	referenced	within	the	function	code.
Similarly,	return	values	can	be	declared	without	any	name.

Modifiers
Modifiers	are	another	concept	unique	to	Solidity.	Modifiers	help	in
modifying	the	behavior	of	a	function.	Let's	try	to	understand	this
with	the	help	of	an	example.	The	following	code		does	not	use
modifiers;	in	this	contract,	two	state	variables,	two	functions,	and	a
constructor	are	defined.	One	of	the	state	variables	stores	the
address	of	the	account	deploying	the	contract.	Within	the
constructor,	the	global	variable	msg.sender	is	used	to	input	the	account
value	in	the	owner	state	variable.	The	two	functions	check	whether
the	caller	is	the	same	as	the	account	that	deployed	the	contract;	if	it
is,	the	function	code	is	executed,	otherwise	it	ignores	the	rest	of	the
code.	While	this	code	works	as	is,	it	can	be	made	better	both	in
terms	of	readability	and	manageability.	This	is	where	modifiers	can
help.	In	this	example,	the	checks	are	made	using	the	if	conditional
statements.	Later,	in	the	next	chapter,	we	will	see	how	to	use	new
Solidity	constructs,	such	as	require	and	assert,	to	execute	the	same
checks	without	if	conditions.	Take	a	look	at	the	following
screenshot	of	the	code	snippet	depicting	modifiers:

Modifiers	are	special	functions	that	change	the	behavior	of	a
function.	Here,	the	function	code	remains	the	same,	but	the
execution	path	of	a	function	changes.	Modifiers	can	only	be	applied
to	functions.	Let's	now	see	how	to	write	the	same	contract	using
modifiers	shown	in	the	following	screenshot:

The	contract	shown	here	has	the	same	constructs:	a	constructor,
two	state	variables,	and	two	functions.	It	also	has	an	additional
special	function	that	is	defined	using	the	modifier	keyword.	The
function	code	for	both	the	AssignDoubleValue	and	AssignTenerValue
functions	are	different,	although	they	have	similar	functionality.
These	functions	do	not	use	the	if	condition	to	check	whether	the
caller	of	the	function	is	the	same	as	the	account	that	deployed	the
contract;	instead,	these	functions	are	decorated	with	the	modifier
name	in	their	signature.

Let's	now	try	to	understand	the	modifier	construct	in	Solidity	and
its	usage.

Modifiers	are	defined	using	the	modifier	keyword	and	an	identifier.
The	code	for	modifier	is	placed	within	curly	brackets.	The	code
within	a	modifier	can	validate	the	incoming	value	and	can
conditionally	execute	the	called	function	after	evaluation.	The	_
identifier	is	of	special	importance	here—its	purpose	is	to	replace
itself	with	the	function	code	that	is	invoked	by	the	caller.

When	a	caller	calls	the	AssignDoubleValue	function,	which	is	decorated
with	the	isOwner	modifier,	the	modifier	takes	control	of	the	execution
and	replaces	the	_	identifier	with	the	called	function	code,	that
is,	AssignDoubleValue.	Eventually,	in	EVM,	the	modifier	looks	like	the
following	code	during	runtime:

modifier	isOwner	{

//	require(msg.sender	==	owner);

if(msg.sender	==	owner)	{

mydata	=	_data	*	2;

}

}

The	same	modifier	can	be	applied	to	multiple	functions,	and	the	_
identifier	can	be	replaced	to	the	called	function	code.

This	helps	in	writing	cleaner,	more	readable,	and	more
maintainable	code.	Developers	do	not	have	to	keep	repeating	the
same	code	in	every	function	or	check	for	the	incoming	value	when
executing	a	function.

The	view,	constant,	and	pure
functions
Solidity	provides	special	modifiers	for	functions,	such	as	view,	pure,
and	constant.	These	are	also	known	as	state	mutability	attributes
because	they	define	the	scope	of	changes	allowed	within	the
Ethereum	global	state.	The	purpose	of	these	modifiers	is	similar	to
those	discussed	previously,	but	there	are	some	small	differences.
This	section	will	detail	the	use	of	these	keywords.

Writing	smart	contract	functions	helps	primarily	with	the	following
three	activities:

Updating	state	variables

Reading	state	variables

Logic	execution

The	execution	of	functions	and	transactions	costs	gas	and	is	not	free
of	cost.	Every	transaction	needs	a	specified	amount	of	gas	based	on
its	execution	and	callers	are	responsible	for	supplying	that	gas	for
successful	execution.	This	is	true	for	transactions	or	for	any	activity
that	modifies	the	global	state	of	Ethereum.

There	are	functions	that	are	only	responsible	for	reading	and
returning	the	state	variable,	and	these	are	like	property	getters	in
other	programming	languages.	They	read	the	current	value	in	a
state	variable	and	return	values	back	to	the	caller.	These	functions
do	not	change	the	state	of	Ethereum.	Ethereum's	documentation	(ht
tp://solidity.readthedocs.io/en/v0.4.21/contracts.html)	mentions	the

http://solidity.readthedocs.io/en/v0.4.21/contracts.html

following	statements	in	relation	to	things	that	modify	state:

Writing	to	state	variables

Emitting	events

Creating	other	contracts

Using	selfdestruct

Sending	Ether	via	calls

Calling	any	function	not	marked	view	or	pure

Using	low-level	calls

Using	inline	assembly	that	contains	certain	opcodes

Solidity	developers	can	mark	their	functions	with	the	view	modifier
to	suggest	to	EVM	that	this	function	does	not	change	the	Ethereum
state	or	any	activity	mentioned	before.	Currently,	this	is	not
enforced,	but	it	is	expected	to	be	in	the	future.

An	example	of	the	view	function	is	shown	in	the	following
screenshot:

If	you	have	functions	that	just	return	values	without	any
modification	of	state,	they	can	be	marked	with	the	view	function.

It	is	also	worth	noting	that	the	view	functions	are	also	known	as
constant	functions.	The	constant	functions	were	used	in	previous
versions	of	Solidity.

The	pure	functions	are	more	restrictive	in	terms	of	state	mutability
when	compared	to	the	view	functions;	however,	their	purpose	is	the
same,	that	is,	to	restrict	state	mutability.	It	is	also	worth	noting	that
even	the	pure	functions	are	not	enforced	as	of	the	time	of	writing,	but
we	expect	it	to	be	in	the	future.

The	pure	functions	add	further	restrictions	on	top	of	the	view
functions;	for	example,	a	pure	function	is	not	allowed	to	even	read
the	current	state	of	Ethereum.	In	short,	the	pure	functions	disallow
reading	and	writing	to	Ethereum's	global	state.	The	additional
activities	not	allowed	according	to	documentation	include	the
following:

Reading	from	state	variables

Accessing	this.balance	or	<address>.balance

Accessing	any	of	the	members	of	block,	tx,	and	msg	(with	the

exception	of	msg.sig	and	msg.data)

Calling	any	function	not	marked	pure

Using	inline	assembly	that	contains	certain	opcodes

The	previous	function	has	been	rewritten	as	a	pure	function	in	the
following	screenshot:

The	address	functions
In	the	chapter	relating	to	data	types,	we	purposely	did	not	explain
the	functions	related	to	the	address	data	type.	Although	these
functions	could	have	been	covered	there,	some	of	these	functions
can	execute	a	fallback	function	automatically,	and	hence	it	is
covered	here.

Address	provides	five	functions	and	a	single	property.

The	only	property	provided	by	address	is	the	balance	property,	which
provides	the	balance	available	in	an	account	(contract	or	individual)
in	wei,	as	shown	in	the	following	code	snippet:

<<account>>.balance	;

In	the	preceding	code,	account	is	a	valid	Ethereum	address	and
this	returns	the	balance	available	in	this	in	terms	of	wei.

Now,	let's	take	a	look	at	the	methods	provided	by	an	account.

The	send	method
The	send	method	is	used	to	send	Ether	to	a	contract	or	to	an
individually	owned	account.	Take	a	look	at	the	following	code
depicting	the	send	method:

<<account>>.send(amount);

The	send	function	provides	2,300	gas	as	a	fixed	limit,	which	cannot
be	superseded.	This	is	especially	important	when	sending	an
amount	to	a	contract	address.	To	send	an	amount	to	an	individually
owned	account,	this	amount	of	gas	is	enough.	The	send	function
returns	a	boolean	true/false	as	a	return	value.	In	this	case,	an
exception	is	not	returned;	instead,	false	is	returned	from	the
function.	If	everything	goes	right	in	an	execution,	true	is	returned
from	the	function.	If	send	is	used	along	with	the	contract	address,	it
will	invoke	the	fallback	function	on	the	contract.	We	will	investigate
fallback	functions	in	detail	in	the	following	section.

Now,	let's	see	an	example	of	the	send	function,	as	shown	in	the
following	screenshot:

In	the	preceding	screenshot,	the	send	function	sent	1	wei	to	the	caller
of	the	SimpleSendToAccount	function.	We	already	learned	about	msg.sender
in	previous	chapters	dealing	with	global	variables.

send	is	a	low-level	function	and	should	be	used	with	caution	as	it	can

invoke	fallback	functions	that	may	recursively	call	back	within	the
calling	contract	again	and	again.	There	is	a	pattern	known	as
Check-Deduct-Transfer	(CDF),	or	sometimes	as	Check-
Effects-Interaction	(CEI),	which	we	look	at	in	the	following
screenshot.	In	this	pattern,	it	is	assumed	that	balances	are
maintained	within	a	mapping.	The	mapping	consists	of	an	address	and
its	associated	balance,	as	shown	in	the	following	screenshot:

In	this	example,	a	check	is	first	made	to	see	if	the	caller	has	a
sufficient	balance	to	withdraw	funds.	If	it	has,	we	can	reduce	the
amount	from	the	existing	balance	and	call	the	send	method.	Then,	we
must	check	that	send	is	successful;	if	not,	return	the	amount.

It	is	worth	noting	that	a	lot	of	sources	claim	send	is	being	deprecated,
but	I	do	not	think	it	is.	There	are	specific	usages	of	the	send	function
still	available,	such	as	sending	an	amount	to	multiple	accounts.
However,	a	new	function	transfer	has	been	introduced	to	send
Ether	from	one	account	to	another;	an	even	better	solution	would
be	to	ask	other	contracts	and	accounts	to	call	a	specific	method	to
withdraw	the	amount.

The	transfer	method
The	transfer	method	is	similar	to	the	send	method.	It	is	responsible	for
sending	Ether	or	wei	to	an	address.	However,	the	difference	here	is
that	transfer	raises	an	exception	in	the	case	of	execution	failure,
instead	of	returning	false	,	and	all	changes	are	reverted.	Take	a	look
at	the	transfer	method	in	the	following	screenshot:

The	transfer	method	is	preferred	over	the	send	method	as	it	raises	an
exception	in	the	event	of	an	error,	meaning	exceptions	are	bubbled
up	in	the	stack	and	halt	execution.

The	call	method
The	call	method	has	resulted	in	a	lot	of	confusion	among
developers.	There	is	a	call	method	available	via	the	web3.eth	object,
and	there	is	also	the	<<address>>.call	function.	These	are	two	different
functions	that	have	different	purposes.

The	web3.eth	call	method	can	only	make	calls	to	a	node	it	is	connected
to	and	is	a	read-	only	operation.	It	is	not	allowed	to	change	the	state
of	Ethereum.	It	does	not	generate	a	transaction	nor	does	it	consume
any	gas.	It	is	used	to	call	the	pure,	constant,	and	view	functions.

On	the	other	hand,	call	function	provided	by	address	data	type	can
call	any	function	available	within	a	contract.	There	are	times	when
the	interface	of	contract,	more	commonly	known	as	ABI,	is	not
available,	and	so	the	only	way	to	invoke	a	function	is	to	use	the	call
method.	This	method	does	not	adhere	to	ABI	and	can	call	any
function	on	a	need-to-know	basis.	There	is	no	compile	time	check
available	for	these	calls,	and	they	return	a	boolean	value	of	either
true	or	false.

It	is	worth	noting	that	it	is	not	an	ideal	practice	to	call	a	contract	function
using	the	call	method,	as	there	are	no	checks	and	validation	involved.

Every	function	in	a	contract	is	identified	at	runtime	using	a	4-bytes
identifier.	This	4-bytes	identifier	is	the	trimmed-down	hash	of	a
function	name	along	with	its	parameter	types.	After	hashing	the
function	name	and	parameter	types,	the	first	four	bytes	are
considered	as	the	function	identifier.	The	call	function	accepts	these
bytes	to	call	the	function	as	the	first	parameter	and	the	actual
parameter	values	as	subsequent	parameters.

A	call	function	without	any	function	parameter	is	shown	in	the
following	code.	Here,	SetBalance	does	not	take	any	parameter:

myaddr.call(bytes4(sha3("SetBalance()")));

A	call	function	with	a	function	parameter	is	shown	in	the	following
snippet.	Here,	SetBalance	takes	a	single	uint	parameter:

myaddr.call(bytes4(sha3("SetBalance(uint256)")),	10);

It	is	also	worth	noting	that	the	send	function	seen	previously	actually
calls	the	call	function	internally	by	supplying	zero	gas	to	the
function.

The	following	code	example	shows	all	the	possible	ways	of	using
this	function.	In	this	example,	a	contract	named	EtherBox	is	created
with	the	following	two	simple	functions:

SetBalance:	It	has	a	single	state	variable,	and	the	purpose	of

this	function	is	to	add	10	in	every	invocation	to	the	existing

value	of	the	state	variable

GetBalance:	This	function	is	responsible	for	returning	the

current	value	of	a	state	variable

Another	contract	named	usingCall	is	created	to	invoke	methods	on
the	EtherBox	contract	via	the	call	function.	Let's	take	a	look	at	the
following	functions	mentioned	in	the	upcoming	code	example:

1.	 	SimpleCall:	This	function	creates	an	instance	of	the	EtherBox

contract	and	converts	it	into	an	address.	Using	this	address,

the	call	function	is	used	to	invoke	the	SetBalance	function	on

the	EtherBox	contract.

2.	 SimpleCallWithGas:	This	function	creates	an	instance	of	the

EtherBox	contract	and	converts	it	into	an	address.	Using	this

address,	the	call	function	is	used	to	invoke	the	SetBalance

function	on	EtherBox.	Alongside	the	call,	gas	is	also	sent	along,

such	that	function	execution	can	be	completed	if	it	needs

more	gas.

3.	 SimpleCallWithGasAndValue:	This	function	creates	an	instance	of

the	EtherBox	contract	and	converts	it	into	an	address.	Using

this	address,	the	call	function	is	used	to	invoke	the	SetBalance

function	on	EtherBox.	Alongside	the	call,	gas	is	also	sent	along,

such	that	function	execution	can	be	completed	if	it	needs

more	gas.	Apart	from	gas,	it	is	also	possible	to	send	Ether	or

wei	to	payable	functions.

Take	a	look	at	the	preceding	functions	in	the	following	screenshot:

The	callcode	method
This	function	is	deprecated	and	will	not	be	discussed	here.	More
information	about	callcode	is	available	at	http://solidity.readthedocs.io/en/
develop/introduction-to-smart-contracts.html.

http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html

The	delegatecall	method
This	function	is,	again,	a	low-level	function	responsible	for	calling
functions	in	another	contract	using	the	callers's	state	variables.
Generally,	it	is	used	along	with	libraries	in	Solidity.	More
information	about	delegatecall	is	available	at:	http://solidity.readthedocs.i
o/en/develop/introduction-to-smart-contracts.html.

http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html

The	fallback	function
The	fallback	functions	are	a	special	type	of	function	available	only
in	Ethereum.	Solidity	helps	in	writing	fallback	functions.	Imagine	a
situation	where	you,	as	a	Solidity	developer,	are	consuming	a	smart
contract	by	invoking	its	functions.	It	is	quite	possible	that	you	use	a
function	name	that	does	not	exist	within	that	contract.	In	such
cases,	the	fallback	function,	as	the	name	suggests,	would
automatically	be	invoked.

A	fallback	function	is	invoked	when	no	function	name	matches	the
called	function.

A	fallback	function	does	not	have	an	identifier	or	function	name.	It
is	defined	without	a	name.	Since	it	cannot	be	called	explicitly,	it
cannot	accept	any	arguments	or	return	any	value.	An	example	of	a
fallback	function	is	as	follows:

A	fallback	function	can	also	be	invoked	when	a	contract	receives	any
Ether.	This	usually	happens	using	the	SendTransaction	function
available	in	web3	to	send	Ether	from	one	account	to	a	contract.
However,	in	this	case,	the	fallback	function	should	be	payable,

otherwise	it	will	not	be	able	to	accept	the	Ether	and	will	raise	an
error.

The	next	important	question	to	be	answered	is	how	much	gas	is
needed	to	execute	this	function.	Since	it	cannot	be	called	explicitly,
gas	cannot	be	sent	to	this	function.	Instead,	EVM	provides	a	fixed
stipend	of	2,300	gas	to	this	function.	Any	consumption	of	gas
beyond	this	limit	will	raise	an	exception	and	the	state	will	be	rolled
back	after	consuming	all	the	gas	that	was	sent	along	with	the
original	function.	It	is	therefore	important	to	test	your	fallback
function	to	ensure	that	it	does	not	consume	more	than	2,300	gas.

It	is	also	worth	noting	that	fallback	functions	are	one	of	the	top
causes	of	security	lapses	in	smart	contracts.	It	is	very	important	to
test	this	function	from	a	security	perspective	before	releasing	a
contract	on	production.

Let's	now	try	to	understand	the	fallback	function	with	the	help	of
some	examples.

We	will	use	the	same	example	as	we	used	for	explaining	the	call
function	of	the	address	data	type.	However,	this	time,	we	have
implemented	a	payable	fallback	function	in	the	EtherBox	contract	whose
entire	purpose	is	to	raise	an	event	and	an	additional	function	that
calls	an	invalid	function.	The	event	is	also	declared	within	the
function.	We	will	look	at	events	in	more	depth	in	the	next	chapter.

When	you	execute	each	of	the	methods	in	the	UsingCall	contract,	you
should	notice	that	the	fallback	function	is	not	invoked	for	any	of	the
functions	apart	from	one	that	does	not	call	a	correct	function,	as
shown	in	the	following	screenshot:

Fallback	functions	are	also	invoked	when	using	the	send	method,
using	the	web3	SendTransaction	function,	or	the	transfer	method.

Summary
Once	again,	this	was	a	heavy	chapter	that	focused	primarily	on
functions,	including	the	address	functions	and	the	pure,	constant,	and
view	functions.	The	address	functions	can	be	intimidating,	especially
when	you	consider	their	multiple	variations	and	their	relationship
with	the	fallback	functions.	If	you	are	implementing	a	fallback
function,	remember	to	pay	special	attention	to	testing,	especially
from	a	security	point	of	view.	You	should	also	pay	special	attention
when	using	low-level	Solidity	functions	such	as	send,	call,	and	transfer
as	they	invoke	the	fallback	function	implicitly.	Always	try	using
contract	functions	that	use	ABI	as	it	ensures	that	the	proper
function,	along	with	its	data	types,	is	being	called.

In	the	next	chapter,	we	will	dive	deep	into	the	world	of	events,
logging,	and	exception	handling	in	Solidity.	Stay	tuned!

Exceptions,	Events,	and
Logging
Writing	contracts	is	the	fundamental	purpose	of	Solidity.	However,
writing	a	contract	demands	sound	error	and	exception	handling.
Errors	and	exceptions	are	the	norm	in	programming	and	Solidity
provides	ample	infrastructure	for	managing	both.	Writing	robust
contracts	with	proper	error	and	exception	management	is	one	of	the
top	best	practices.	Events	are	another	important	construct	in
Solidity.	For	all	topics	that	we've	discussed	so	far,	we've	seen	a
caller	that	invokes	functions	in	contracts;	however	we	have	not
discussed	any	mechanism	through	which	a	contract	notifies	its
caller	and	others	about	changes	in	its	state	and	otherwise.	This	is
where	events	come	in.	Events	are	a	part	of	event-driven	programs
where,	based	on	changes	within	a	program,	it	proactively	notifies	its
caller	about	the	changes.	The	caller	is	free	to	use	this	information	or
ignore	it.	Finally,	both	exceptions	and	events,	to	a	large	extent,	use
the	logging	feature	provided	by	EVM.

In	this	chapter,	we	will	cover	the	following	topics:

Understanding	exception	handling	in	Solidity

Error	handling	with	require

Error	handling	with	assert

Error	handling	with	revert

Understanding	events

Declaring	an	event

Using	an	event

Writing	to	logs

Error	handling
Errors	are	often	inadvertently	introduced	while	writing	contracts,
so	writing	robust	contracts	is	a	good	practice	and	should	be
followed.	Errors	are	a	fact	of	life	in	the	programming	world	and
writing	error-free	contracts	is	a	desired	skill.	Errors	can	occur	at
design	time	or	runtime.	Solidity	is	compiled	into	bytecode	and	there
are	design-level	checks	for	any	syntax	errors	at	design	time	while
compiling.	Runtime	errors,	however,	are	more	difficult	to	catch	and
generally	occur	while	executing	contracts.	It	is	important	to	test	the
contract	for	possible	runtime	errors,	but	it	is	more	important	to
write	defensive	and	robust	contracts	that	take	care	of	both	design
time	and	runtime	errors.

Examples	of	runtime	errors	are	out-of-gas	errors,	divide	by	zero
errors,	data	type	overflow	errors,	array-out-of-index	errors,	and	so
on.

Until	version	4.10	of	Solidity	there	was	a	single	throw	statement
available	for	error	handling.	Developers	had	to	write	multiple
if...else	statements	to	check	the	values	and	throw	in	the	case	of	an
error.	The	throw	statement	consumes	all	the	provided	gas	and	reverts
to	the	original	state.	This	is	not	an	ideal	situation	for	architects	and
developers	as	unused	gas	should	be	returned	back	to	the	caller.

From	version	4.10	of	Solidity	newer	error	handling	constructs	were
introduced	and	throw	was	made	obsolete.	These	were	the	assert,
require,	and	revert	statements.	In	this	section,	we	will	look	into	these
error	handling	constructs.

It	is	worth	noting	that	there	are	no	try..catch	statements	or
constructs	to	catch	errors	and	exceptions.

The	require	statement
The	word	require	denotes	constraints.	Declaring	require	statements
means	declaring	prerequisites	for	running	the	function;	in	other
words,	it	means	declaring	constraints	that	should	be	satisfied	before
executing	the	following	lines	of	code.

The	require	statement	takes	in	a	single	argument:	a	statement	that
evaluates	to	a	true	or	false	boolean	value.	If	the	evaluation	of	the
statement	is	false,	an	exception	is	raised	and	execution	is	halted.
The	unused	gas	is	returned	to	the	caller	and	the	state	is	reversed	to
the	original.	The	require	statement	results	in	the	revert	opcode,	which
is	responsible	for	reverting	the	state	and	returning	unused	gas.

The	following	code	illustrates	use	of	the	require	statement:

Let's	take	a	look	at	the	following	functions	depicted	in	the	preceding

screenshot:

1.	 ValidInt8:	This	function	uses	a	couple	of	require	statements.	In

constructs,	a	statement	checks	for	values	greater	than	or

equal	to	zero.	If	this	statement	is	true,	execution	passes	to	the

next	statement.	If	this	statement	is	false,	an	exception	is

thrown	and	execution	stops.	The	next	require	statement

checks	whether	the	value	is	less	than	or	equal	to	255.	If	the

argument	is	greater	than	255,	the	statement	evaluates	to	false

and	throws	an	exception.

2.	 ShouldbeEven:	This	function	is	of	a	similar	nature.	In	this

function,	require	checks	whether	the	incoming	argument	is

even	or	odd.	If	the	argument	is	even,	execution	passes	to	the

next	statement;	otherwise	an	exception	is	thrown.

The	require	statement	should	be	used	for	validating	all	arguments
and	values	that	are	incoming	to	the	function.	This	means	that	if
another	function	from	another	contract	or	function	in	the	same
contract	is	called,	the	incoming	value	should	also	be	checked	using
the	require	function.	The	require	function	should	be	used	to	check	the
current	state	of	variables	before	they	are	used.	If	require	throws	an
exception,	it	should	mean	that	the	values	passed	to	the	function
were	not	expected	by	the	function	and	that	the	caller	should	modify
the	value	before	sending	it	to	a	contract.

The	assert	statement
The	assert	statement	has	a	similar	syntax	to	the	require	statement.	If	it
accepts	a	statement,	that	should	then	evaluate	to	either	a	true	or
false	value.	Based	on	that,	the	execution	will	either	move	on	to	the
next	statement	or	throw	an	exception.	The	unused	gas	is	not
returned	to	the	caller	and	instead	the	entire	gas	supply	is	consumed
by	assert.	The	state	is	reversed	to	original.	The	assert	function	results
in	invalid	opcode,	which	is	responsible	for	reverting	the	state	and
consuming	all	gas.

The	function	shown	previously	has	been	extended	to	include	an
addition	to	the	existing	variable.	However,	remember	that	adding
two	variables	can	result	in	an	overflow	exception.	This	is	verified
using	the	assert	statement;	if	it	returns	true,	the	value	is	returned,
otherwise	the	exception	is	thrown.	

The	following	screenshot	illustrates	the	use	of	the	assert	function:

While	require	should	be	used	for	values	coming	from	the	outside,
assert	should	be	used	for	validating	the	current	state	and	condition
of	the	function	and	contract	before	execution.	Think	of	assert	as
working	with	runtime	exceptions	that	you	cannot	predict.	The
assert	statement	should	be	used	when	you	think	that	a	current	state
has	become	inconsistent	and	that	execution	should	not	continue.

The	revert	statement
The	revert	statement	is	very	similar	to	the	require	function.	However,
it	does	not	evaluate	any	statement	and	does	not	depend	on	any	state
or	statements.	Hitting	a	revert	statement	means	an	exception	is
thrown,	along	with	the	return	of	unused	gas,	and	reverts	to	its
original	state.

In	the	following	example,	an	exception	is	thrown	when	the
incoming	value	is	checked	using	the	if	condition;	if	the	if	condition
evaluation	results	in	false,	it	executes	the	revert	function.	This	results
in	an	exception	and	execution	stops,	as	shown	in	the	following
screenshot:

Events	and	logging
We	have	seen	the	usage	of	events	in	previous	chapters	without
going	into	any	detail.	In	this	section,	however,	we	will	look	into
events	in	more	depth.	Events	are	well	known	to	event-driven
programmers.	Events	refer	to	certain	changes	in	contracts	that	raise
events	and	notify	each	other	such	that	they	can	act	and	execute
other	functions.

Events	help	us	write	asynchronous	applications.	Instead	of
continuously	polling	the	Ethereum	ledger	for	the	existence	of	a
transaction	and	then	blocking	with	certain	information,	the	same
procedure	can	be	implemented	using	events.	This	way,	the
Ethereum	platform	will	inform	the	client	if	an	event	has	been
raised.	This	helps	when	writing	modular	code	and	also	conserves
resources.

Events	are	part	of	contract	inheritance,	where	a	child	contract	can
invoke	events.	Event	data	is	stored	along	with	block	data.	The
logsBloom	value	is	the	event	data,	as	shown	in	the	following
screenshot:

Declaring	events	in	Solidity	is	very	similar	to	performing	functions.
However,	events	do	not	have	any	body.	A	simple	event	can	be
declared	using	the	event	keyword	followed	by	an	identifier	and	any
parameters	it	wants	to	send	along	with	the	event	as	shown	in	the
following	code:

event	LogFunctionFlow(string);

In	the	preceding	line	of	code,	event	is	the	keyword	used	for	declaring
events	followed	by	its	name	and	a	set	of	parameters	that	will	be	sent
along	with	the	event.	Any	string	text	can	be	sent	with	the
LogFunctionFlow	event.

Using	an	event	is	quite	simple.	Simply	invoke	an	event	using	its
name	and	pass	on	the	arguments	it	expects.	For	the	LogFunctionFlow
event,	the	invocation	would	look	as	follows	which	is	similar	to	a
function	call	with	parameters:

LogFunctionFlow("I	am	within	function	x");

The	following	code	snippet	shows	an	event	in	use.	In	this	example,
an	event,	LogFunctionFlow	,	is	declared	with	a	string	as	its	sole
parameter.	The	same	event	is	invoked	multiple	times	from	the
ValidInt8	function,	providing	text	information	during	various	stages
within	the	function:

Executing	this	contract	in	Remix	shows	the	result,	which	contains
three	logs	with	event	information	as	shown	in	the	following
screenshot:

Events	can	also	be	watched	from	custom	applications	and
decentralized	applications	using	web3.

Events	can	be	filtered	using	parameters	names.

The	following	two	methods	allow	us	to	watch	for	events:

1.	 Watching	individual	events:	In	this	method,	using	web3,

individual	events	from	contracts	can	be	watched	and

tracked.	When	the	exact	event	is	fired	from	a	contract,	it

helps	execute	a	function	in	the	web3	client.	An	example	of

watching	an	individual	event	is	shown	in	the	following

screenshot.	Here,	ageRead	is	the	name	of	the	event	we	are

interested	in	and	watching	for.	We	read	fromBlock	number

25000	until	the	latest	block.	First,	a	reference	to	the	ageRead

event	is	made	and	a	watcher	is	added	to	the	reference.	The

watcher	takes	a	promise	function	that	is	executed	whenever

the	ageRead	event	is	fired:

2.	Watching	all	events:	In	this	method,	using	web3	all	events

from	contracts	can	be	watched	and	tracked.	When	any	event

is	fired	from	a	contract,	it	notifies	and	helps	to	execute	a

function	in	the	web3	client	in	response.	In	this	case,	the	event

can	be	filtered	using	an	event	name.	An	example	of	watching

all	events	is	shown	in	the	following	screenshot.	Here,	we	are

interested	in	and	watching	for	any	event	from	a	contract.	We

read	fromBlock	number	25000	until	the	latest	block.	First,	a

reference	to	allEvents	is	made	and	a	watcher	is	added	to	the

reference.	The	watcher	then	takes	a	promise	function	that	is

executed	whenever	any	event	is	fired:

The	value	in	the	result	object	from	the	event	is	shown	in
the	following	screenshot:

Summary
In	this	chapter,	we	covered	exception	handling	and	events.	These
are	important	topics	in	Solidity,	especially	when	writing	any	serious
decentralized	applications	on	the	Ethereum	platform.	Exception
handling	in	Solidity	is	implemented	using	three	functions:	assert,
require,	and	revert.	Although	they	sound	similar,	they	have	different
purposes,	which	were	explained	in	this	chapter	with	the	help	of
examples.	Events	help	us	write	scalable	applications.	Instead	of
continuously	polling	the	platform	for	data	and	wasting	resources,
it's	better	to	write	events	and	then	wait	for	them	to	execute
functions	asynchronously.	This	was	also	covered	in	this	chapter.

In	the	next	chapter,	we	will	focus	on	using	Truffle,	one	of	the	most
popular	development	platforms	for	developing	an	application	on
the	Ethereum	platform.	Stay	tuned!

Truffle	Basics	and	Unit	Testing
Programming	languages	need	a	rich	ecosystem	of	tools	that	eases
development.	Like	any	application,	even	blockchain	based
decentralized	applications	should	have	a	minimal	Application
Lifecycle	Management	(ALM)	process.	It	is	important	for	any
application	to	have	a	process	of	build,	test,	and	deploy
continuously.	Solidity	is	a	programming	language	and	needs
support	from	other	tools	to	ensure	that	developers	can	develop,
build,	test,	and	deploy	contracts	with	ease	rather	than	going
through	the	painful	process	of	deploying	and	testing	them.	This
improves	their	productivity	and	eventually	helps	bring	the
application	to	market	faster,	better,	and	cheaper.	It	is	also	possible
to	introduce	DevOps	for	smart	contracts	with	the	help	of	such	tools.
Truffle	is	one	such	development,	testing,	and	deployment	utility
that	can	make	these	activities	a	breeze.

This	chapter	covers	the	following	topics:	

Application	development	life	cycle	management

Understanding	and	installing	Truffle

Contract	development	with	Truffle

Testing	contracts	with	Truffle

Application	development	life
cycle	management
As	mentioned	before,	every	serious	application	has	some
development	process	built	around	it.	Typically,	it	involves
designing,	building,	testing,	and	deploying.	The	contract	ALM	is	no
different	from	any	other	software	or	programming	development	life
cycle.	The	first	step	in	contract	development	is	to	get	and	finalize
requirements	about	the	problem	under	consideration.
Requirements	form	the	starting	activity	for	any	decentralized
application.	Requirements	contain	descriptions	of	problems,	use
cases,	and	detailed	testing	strategy.

Architects	take	functional	and	technical	requirements	as	their
inputs	and	create	application	architecture	and	design.	They	also
document	them	using	notations	easily	understandable	by	others.
The	project	development	team	takes	these	architecture	and	design
documents	and	breaks	them	down	into	features	and	sprints.	The
development	team	starts	working	on	building	contracts	and	other
artifacts	based	on	this	documentation.	The	contracts	are	frequently
deployed	to	a	test	environment	for	testing	and	to	ensure	that	they
are	in	a	working	condition,	both	technically	and	functionally.	The
contracts	are	unit	tested	to	check	their	functionality	in	isolation.	If
there	are	unit	test	failures,	the	entire	build	and	test	process	should
be	repeated.	At	the	end,	all	artifacts	are	deployed	to	the	production
environment.

As	you	can	see,	ALM	is	an	involved	process	and	can	consume
substantial	time	and	productivity	on	the	part	of	developers.	There	is
a	need	for	tools	and	automation	to	help	ease	this	process,	and	this	is
where	Truffle	as	a	utility	shines.

Truffle
Truffle	is	an	accelerator	that	helps	increase	the	speed	of
development,	deployment	and	testing,	and	increases	developer
productivity.	It	is	built	specifically	for	Ethereum-based	contract	and
application	development.	The	latest	Truffle	version	is	4.	It	is	a	node
runtime-based	framework	that	can	help	implement	DevOps,
continuous	integration,	continuous	delivery,	and	continuous
deployment	with	ease.

Installing	Truffle	is	quite	simple—	a	prerequisite	for	installing
Truffle	is	Node.js,	as	it	is	deployed	as	a	node	package.

Truffle	can	be	installed	by	executing	the	following	npm	command
from	the	command	line:

$	npm	install	-g	truffle

Here	npm	refers	to	node	package	manager	and	the	-g	switch	signifies
installation	at	global	scope.	The	following	screenshot	shows	the
installation	of	Truffle	on	Windows	Server	2016.	The	command	is
the	same	for	Linux	distribution	as	well:

Running	truffle	--version	shows	the	current	version	and	all
commands	available	with	Truffle	as	shown	in	the	following
screenshot:

Development	with	Truffle
Using	Truffle	is	quite	simple.	Truffle	provides	lots	of	scaffolding
code	and	configuration	by	default.	Developers	need	only	to
reconfigure	some	of	the	out-of-the-box	configuration	options	and
focus	on	writing	their	contracts.	Let's	take	a	look	at	the	following
steps:

1.	 The	first	step	is	to	create	a	project	folder	that	will	hold	all

projects-	and	Truffle-generated	artifacts.

2.	 Navigate	to	that	folder	and	enter	the	init	command.	The	init

command	refers	to	the	initiation	and	initialization	of	Truffle

within	the	folder.	It	will	generate	appropriate	folders,	code

files,	configuration,	and	linkage	within	the	folder	as	shown

in	the	following	screenshot:

The	preceding	code	results	in	a	generated	folder	structure
as	shown	in	the	following	screenshot:

Let's	take	a	look	at	the	following	folders	shown	in	the
preceding	screenshot:	

The	contracts	folder	contains	a	single	file	named	migrations.sol.

It	contains	a	contract	responsible	for	deploying	custom

contracts	to	an	Ethereum	network.	Any	custom	contracts

should	be	placed	within	this	folder.

The	migrations	folder	contains	multiple	JavaScript	files	for

executing	the	contract	deployment	process.	These

JavaScript	files	should	be	modified	to	ensure	that	all	custom

contracts	are	visible	to	Truffle	and	Truffle	can	chain	and	link

them	in	appropriate	order	for	deployment.	It	contains

multiple	JavaScript	files	prefixed	with	a	number.	These

scripts	are	executed	in	a	consecutive	order	starting	from	1.

The	test	folder	is	empty	but	any	custom	test	scripts	should	be

placed	within	this	folder.

There	are	two	JSON	configuration	files—truffle	and	truffle-

config.	The	main	configuration	file	of	interest	for	a	project	is

truffle.js	and	this	should	be	customized	for	the	project.	It

should	export	a	JSON	object	such	that	Truffle	runtime	can

use	it	to	configure	the	environment.

An	important	configuration	information	that	should	be
provided	here	is	the	network	information	to	which	Truffle
should	connect	and	deploy	contracts.

3.	 The	following	code	snippet	can	be	used	to	configure	the

network	configuration.	There	should	be	an	existing	Geth

instance	running	with	an	RPC	endpoint	and	port	enabled;

ganache-cli	can	also	be	used	instead	of	geth	for	deploying

contracts	using	the	JSON-RPC	protocol.	A	network

configuration	element	should	be	defined	to	connect	to	an

existing	Ethereum	network.	The	network	is	configured	with

a	name	and,	similarly,	multiple	networks	can	be	configured

for	different	environments:

module.exports	=	{

				networks:	{

						development:	{

										host:	"127.0.0.1",

										port:	8545,

										network_id:	"*"	//	Match	any	network	id

						}

			}

};

4.	 Create	a	new	contract	and	store	it	within	the	contracts	folder

with	first.sol	as	filename	and	content,	as	shown	in	the

following	screenshot:

pragma	solidity	^0.4.17;

contract	First	{

								int	public	mydata;

								function	GetDouble(int	_data)	public	returns	(int	

_output)	{

																			mydata	=	_data	*	2;

																			return	_data	*	2;

									}

					}

5.	 Write	another	contract	as	shown	in	the	following	screenshot

and	save	it	in	the	same	folder	as	earlier	with	second.sol	as	the

filename:

pragma	solidity	^0.4.17;

import	"./first.sol";

									contract	Second	{

																address	firstAddress;	

																int	public	_data;

															function	Second(address	_first)	public	{

																			firstAddress	=	_first;

															}

														function	SetData()	public	{

																	First	h	=	First(firstAddress);

																_data	=	h.GetDouble(21);

													}

							}

Eventually,	the	contract	folder	looks	as	shown	in	the	following
screenshot:

6.	 Modify	the	migrations	folder	to	add	another	script	file	to	it.	It

should	be	noted	that	each	filename	must	be	incremented	by

one	for	setting	the	order	of	deployment	of	contracts.	In	our

case,	the	name	of	the	file	is	2_Custom.js.	The	content	of	this	file

is	shown	next.	The	first	two	lines	of	this	file	refer	to	two

contracts	written	earlier.	This	file	exports	a	function	that	is

invoked	by	Truffle	while	deploying.	The	function	first

deploys	the	first	contract	and,	after	successfully	deploying

the	first	contract,	deploys	the	second	contract	as	shown	in

the	following	screenshot:

7.	 Execute	the	compile	command	using	truffle.cmd	as	shown	in	the

following	screenshot.	It	might	give	errors	and	a	warning.	If

there	are	any	errors	or	warnings,	they	should	be	rectified

before	moving	ahead:

It	is	to	be	noted	that	on	Windows,	when	executing	the	truffle	command	on
Windows,	if	it	gives	an	error	related	to	an	undefined	module,	you	should
execute	truffle.cmd,	instead	of	just	truffle,	with	the	command.

8.	 Now	it's	time	to	deploy	the	compiled	contracts.	Truffle

provides	the	migrate	command	and	it	should	be	used	as

shown	in	the	following	screenshot.	It	is	to	be	noted,	that

before	running	the	migrate	command,	an	instance	of	Geth	or

ganache-cli	should	be	running.	In	case	of	using	Geth	mining,

the	mining	process	should	also	be	running.	If	using	testrpc,

miners	are	not	required:

The	preceding	screenshot	shows	that	both	the	migration	scripts
were	executed	based	on	their	number	ordering.	Now,	the	contracts
are	deployed	and	available	for	consumption.	An	instance	of	contract
can	be	created	using	its	ABI	definition	and	address.	The	contract
address	along,	with	the	transaction	hash,	are	available.

There	are	many	more	activities	and	commands	available	with
Truffle;	however	to	keep	this	chapter	concise,	we	will	move	towards
understanding	unit	testing	of	contracts	using	Truffle	runtime.

Testing	with	Truffle
Unit	testing	refers	to	a	type	of	testing	specific	to	a	software	unit
and	component	in	isolation.	Unit	tests	help	ensure	that	code	in	a
contract	is	written	according	to	functional	and	technical
requirements.	When	each	of	the	smallest	components	is	tested
under	different	scenarios	and	passes	successfully,	other	important
tests	such	as	integration	tests	can	be	performed	to	test	multiple
components.

As	mentioned	before,	Truffle	generates	a	test	folder	and	all	test	files
should	be	placed	in	this	folder.	Tests	can	be	written	in	JavaScript	as
well	as	Solidity.	Since	this	is	a	book	on	Solidity,	tests	are	focused	on
writing	using	Solidity.

Tests	in	Solidity	are	written	by	authoring	contracts	and	saved	as	a
Solidity	file.	The	name	of	the	contract	should	start	with	the	Test
prefix	and	each	function	within	the	contract	should	be	prefixed	with
test.	Please	note	the	case	sensitivity	of	the	Test	and	the	test	prefix	for
both	contracts	as	well	as	function	names.

The	following	screenshot	shows	the	code	for	writing	tests	within	the
contract:

There	are	a	few	things	to	note	in	the	TestFirst	contract.	Important
Truffle-provided	libraries	such	as	Assert.sol	and	DeployedAddresses.sol	are
imported	so	that	functions	in	them	can	be	used.

There	can	be	multiple	functions	within	one	contract	but	for
demonstration	purposes	a	single	unit	test	is	written.	In	practice
there	will	be	multiple	tests	within	the	same	contract.

The	first	line	in	the	function	creates	a	reference	to	the	deployed
First	contract	and	invokes	the	GetDouble	function.	The	return	value	from
this	function	is	compared	to	the	second	parameter	of	the	Assert.equal
function	and,	if	both	are	the	same,	then	the	test	succeeds;	otherwise
it	fails.

The	Assert.equal	function	helps	compare	an	actual	return	value
with	the	expected	return	value.

It	is	important	to	understand	that,	whenever	a	function	within	a
contract	is	invoked,	it	is	a	transaction	that	will	eventually	be	written
in	a	block	and	ledger.	In	effect,	testing	a	function	within	a	contract
also	means	that	you	are	testing	transactions	related	to	your	smart
contract.

Tests	are	executed	using	the	test	command	as	shown	in	the

following	screenshot:

Summary
This	chapter	introduced	Truffle	as	a	utility	for	easing	the	processes
of	authoring,	testing,	and	deploying	Solidity	contracts.	Instead	of
typing	and	executing	each	step,	Truffle	provides	easy	commands	for
compiling,	deploying,	and	testing	contracts.

The	following	chapter	will	be	the	last	chapter	of	this	book	and	will
focus	on	troubleshooting	activities	and	tools	related	to	Solidity.
Debugging	is	an	important	aspect	of	troubleshooting	and	is	an
important	skill	for	any	contract	developer	and	development.	Remix
debugging	facilities	will	be	discussed	along	with	other	mechanisms
for	debugging	contracts.

Debugging	Contracts
This	is	the	last	chapter	of	the	book.	By	now,	we	have	looked	at
Solidity	and	Ethereum	from	a	conceptual	standpoint,	developed
and	authored	Solidity	contracts,	and	tested	them.	The	only	thing
that	was	not	discussed	was	troubleshooting	contracts.
Troubleshooting	is	an	important	skill	and	exercise	when	dealing
with	any	programming	language.	It	helps	in	finding	issues	and
solving	them	efficiently.	Troubleshooting	is	both	an	art	and	a
science.	Developers	should	learn	the	art	of	troubleshooting	through
experience	as	well	as	by	exploring	details	behind	the	scenes	using
debugging.	This	chapter	will	focus	on	debugging	coding	issues
related	to	Solidity	contracts.

This	chapter	covers	the	following	topics:

Debugging	contracts

Debugging	contracts	using	Remix	and	Solidity	events

Debugging
Debugging	is	an	important	exercise	when	authoring	Solidity	smart
contracts.	Debugging	refers	to	finding	issues,	bugs,	and	removing
them	by	changing	code.	It	is	very	difficult	to	debug	a	smart	contract
if	there	is	in	adequate	support	from	tools	and	utilities.	Generally,
debugging	involves	executing	each	line	of	code	step	by	step,	finding
the	current	state	of	temporary,	local,	and	global	variables	and
walking	through	each	instruction	while	executing	contracts.

There	are	the	following	ways	to	debug	Solidity	contracts:

Using	the	Remix	editor

Events

Block	explorer

The	Remix	editor
We	used	the	Remix	editor	to	write	Solidity	contracts	in	the	previous
chapters.	However,	we	have	not	used	the	debugging	utility	available
in	Remix.	The	Remix	debugger	helps	us	observe	the	runtime
behavior	of	contract	execution	and	identify	issues.	The	debugger
works	in	Solidity	and	the	resultant	contract	bytecode.	With	the
debugger,	the	execution	can	be	paused	to	examine	contract	code,
state	variables,	local	variables,	and	stack	variables,	and	view	the
EVM	instructions	generated	from	contract	code.

The	following	screenshot	of	contract	code	will	be	used	to
demonstrate	debugging	using	the	Remix	editor:

The	contract	has	a	single	state	variable	and	function.	The	function
loops	over	the	provided	input	till	it	reaches	the	value	of	counter	and
returns	a	cumulative	sum	to	the	caller.

Deploying	and	executing	the	LoopCounter	function	will	provide	an
opportunity	to	debug	this	function	by	clicking	on	the	Debug	button
as	shown	in	the	following	screenshot:

This	will	bring	the	focus	to	the	Debugger	tab	in	Remix	and	here
runtime	information	about	local,	state,	memory,	callstack,	stack,
instructions,	and	call	data	can	be	verified	for	the	execution	of	each
code	step.

The	following	next	two	screenshots	show	varied	internal
information	about	contract	runtime	execution:

Take	a	look	at	the	second	screenshot,	as	follows:

The	following	instructions	from	the	preceding	screenshot	show	the
bytecode	for	function	execution:

Solidity	Locals:	This	instruction	shows	the	incoming

parameter,	data	type,	and	its	value.

Solidity	State:	This	instruction	shows	the	state	variables,

their	data	type,	and	current	value.

Step	detail:	This	is	important	for	debugging	gas	usage,

consumption,	and	remaining	gas.

Call	Stack:	This	instruction	shows	the	interim	variables

needed	by	function	code.

Memory:	This	instruction	shows	the	local	variables	used

within	the	function.

Call	Data:	This	function	shows	the	actual	payload	the	client

sends	to	the	contract.	The	first	four	bytes	refer	to	the

function	identifier	and	the	rest	contain	32	bytes	for	each

incoming	parameter.

An	important	aspect	of	debugging	is	to	stop	the	execution	at	each
line	of	code	of	special	interest.	Breakpoints	help	do	this.	Clicking	on
any	line	beside	the	line	number	helps	in	setting	up	a	breakpoint.
Clicking	again	removes	the	breakpoint.	During	the	execution	of	a
function,	when	it	hits	this	line;	the	execution	is	halted,	and	the
values	and	execution	can	be	verified	from	the	Debugger	tab.	The
following	screenshot	shows	the	breakpoint:

Using	Remix,	it	is	also	possible	to	perform	Step	over	back,	Step
back,	Step	into,	Step	over	forward,	Jump	to	the	previous
breakpoint,	Jump	out,	and	Jump	to	the	next	breakpoint.	It	also
provides	the	facility	to	view	information	using	a	block	number	or
transaction	hash	about	a	particular	block	or	transaction.	It	is
possible	to	provide	a	transaction	number	in	a	block	instead	of	a
transaction	hash,	as	shown	in	the	following	screenshot:

Using	events
We	saw	how	to	use	events	in	Chapter	8,	Exceptions,	Events,	and
Logging.	Events	can	be	trapped	and	can	help	provide	relevant
information	about	the	current	execution.	Contracts	should	declare
events	and	functions	should	invoke	these	events	at	appropriate
locations	with	information	that	provides	enough	context	to	whoever
is	reading	these	events.

Using	a	Block	Explorer
A	Block	Explorer	is	an	Ethereum	browser.	It	provides	reports	and
information	about	current	blocks	and	transactions	in	its	network.
It's	a	great	place	to	learn	more	about	existing	and	past	data.	It	is
available	at	https://etherscan.io/,	as	shown	in	the	following	screenshot:

https://etherscan.io/

It	shows	transactions	involving	both	accounts	and	contracts.
Clicking	on	a	transaction	shows	details	about	it,	as	shown	in	the
following	screenshot:

By	now,	you	understand	the	details	about	transactions	stored
within	the	Ethereum	ledger.	From	the	preceding	screenshot,	let's
take	a	look	at	the	following	few	details	of	the	transaction:

TxHash:	This	detail	refers	to	transaction	hashes

TxReceipt	Status:	This	detail	represents	the	status	of	a

transaction,	whether	successful	or	pending

Block	Height:	This	detail	shows	which	block	number	the

transaction	is	stored	in

TimeStamp:	This	detail	shows	the	timestamp	for	the

transaction

From:	This	detail	shows	who	sent	the	transaction

To:	This	detail	shows	the	recipient	of	the	transaction

Value:	This	details	shows	the	amount	of	Ether	transferred

Gas	Limit:	This	detail	represents	the	gas	limit	specified	by

the	user

Gas	Used	By	Txn:	This	detail	shows	the	amount	of	gas	used

by	the	transaction

Gas	Price:	This	detail	shows	an	amount	of	gas	price

determined	by	the	sender

nonce:	This	is	to	determine	the	count	of	transactions	sent	by

the	sender

Actual	Tx	Cost/Fees:	This	detail	shows	total	cost	of	a

transaction,	that	is,	gas	used	*	gas	price

Clicking	on	a	block	shows	information	about	the	block	and	a	list	of
transactions	that	are	part	of	that	block.	It	shows	all	the	details	from
a	block	header,	such	as	block	hash,	parent	hash,	miner	account,
difficulty	level,	nonce,	and	more,	as	shown	in	the	following

screenshot:

The	block	header	has	some	interesting	properties,	and	some	of

them	are	mentioned	here.	The	Height	detail	provides	the	block
number	in	the	ledger,	the	number	of	transactions	within	the	block
(110	in	this	case),	and	the	number	of	internal	transactions	(these
are	referred	to	as	message	calls	between	contracts),	the	hash	of
current	block	header	(Hash),	the	hash	of	the	parent	block	(Parent
Hash),	the	hash	of	the	root	for	uncles,	the	coinbase	or	etherbase
account	that	mined	the	block	(Mined	By),	the	difficulty	level	for	the
current	block,	the	cumulative	difficulty	for	all	blocks	till	the	current
block,	the	size	of	the	block,	the	total	gas	used	by	all	transactions
within	the	block,	the	maximum	limit	of	gas	for	the	block,	the
evidence	that	proof	of	work	has	been	carried	out	(Nonce),	and	the
reward	for	mining	the	block.

Summary
This	brings	us	to	the	end	of	this	chapter	and	this	book.	Solidity	is	a
new	programming	language	that	is	evolving	continuously.	Solidity
contracts	can	be	debugged	using	the	Remix	editor.	Remix	provides
a	convenient	way	to	author	and	debug	contracts	by	verifying
variables	and	code	execution	at	every	step.	It	helps	us	move	forward
and	back	in	code	execution.	It	provides	breakpoints	to	break	the
execution	of	code.	There	are	other	ways	to	debug	contracts	as	well.
These	include	using	Block	Explorers	and	Solidity	events.	Although
events	and	Block	Explorers	provide	limited	capabilities	for
debugging,	they	are	very	helpful	and	facilitate	production.

I	hope	you	enjoyed	reading	this	book	and	sincerely	believe	that	you
are	becoming	a	rock	star	Solidity	developer	by	now.	Stay	tuned	and
keep	learning!

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books
by	Packt:

Mastering	Blockchain	-	Second	Edition
Imran	Bashir

ISBN:	978-1-78883-904-4

Master	the	theoretical	and	technical	foundations	of	the

blockchain	technology

Understand	the	concept	of	decentralization,	its	impact,	and

its	relationship	with	blockchain	technology

Master	how	cryptography	is	used	to	secure	data	-	with

practical	examples

Grasp	the	inner	workings	of	blockchain	and	the	mechanisms

behind	bitcoin	and	alternative	cryptocurrencies

Understand	the	theoretical	foundations	of	smart	contracts

Learn	how	Ethereum	blockchain	works	and	how	to	develop

https://www.packtpub.com/big-data-and-business-intelligence/mastering-blockchain-second-edition

decentralized	applications	using	Solidity	and	relevant

development	frameworks

Identify	and	examine	applications	of	the	blockchain

technology	-	beyond	currencies

Investigate	alternative	blockchain	solutions	including

Hyperledger,	Corda,	and	many	more

Explore	research	topics	and	the	future	scope	of	blockchain

technology

Building	Blockchain	Projects

Narayan	Prusty

ISBN:	978-1-78712-214-7

Walk	through	the	basics	of	the	Blockchain	technology

Implement	Blockchain’s	technology	and	its	features,	and	see

what	can	be	achieved	using	them

Build	DApps	using	Solidity	and	Web3.js

Understand	the	geth	command	and	cryptography

Create	Ethereum	wallets

https://www.packtpub.com/big-data-and-business-intelligence/building-blockchain-projects

Explore	consortium	blockchain

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a
review	on	the	site	that	you	bought	it	from.	If	you	purchased	the
book	from	Amazon,	please	leave	us	an	honest	review	on	this	book's
Amazon	page.	This	is	vital	so	that	other	potential	readers	can	see
and	use	your	unbiased	opinion	to	make	purchasing	decisions,	we
can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked
with	Packt	to	create.	It	will	only	take	a	few	minutes	of	your	time,	but
is	valuable	to	other	potential	customers,	our	authors,	and	Packt.
Thank	you!

	Title Page
	Copyright and Credits
	Solidity Programming Essentials

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	Introduction to Blockchain, Ethereum, and Smart Contracts
	What is a blockchain?
	Why blockchains?
	Cryptography
	Symmetric encryption and decryption
	Asymmetric encryption and decryption
	Hashing
	Digital signatures

	Ether
	Gas
	Blockchain and Ethereum architecture
	How are blocks related to each other?
	How are transactions and blocks related to each other?

	Ethereum nodes
	EVM
	Ethereum mining nodes
	How does mining work?

	Ethereum accounts
	Externally owned accounts
	Contract accounts

	Transactions
	Blocks
	An end-to-end transaction
	What is a contract?
	What is a smart contract?
	How to write smart contracts?

	How are contracts deployed?
	Summary

	Installing Ethereum and Solidity
	Ethereum networks
	Main network
	Test network
	Ropsten
	Rinkeby
	Kovan

	Private network
	Consortium network

	Geth
	Installing Geth on Windows

	Creating a private network
	ganache-cli
	Solidity compiler
	The web3 JavaScript library
	Mist wallet
	MetaMask
	Summary

	Introducing Solidity
	Ethereum Virtual Machine
	Solidity and Solidity files
	Pragma
	Comments
	The import statement
	Contracts

	Structure of a contract
	State variables
	Structure
	Modifiers
	Events
	Enumeration
	Functions

	Data types in Solidity
	Value types
	Passing by value

	Reference types
	Passing by reference

	Storage and memory data locations
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6
	Rule 7
	Rule 8

	Literals
	Integers
	Boolean
	The byte data type
	Arrays
	Fixed arrays
	Dynamic arrays
	Special arrays
	The bytes array
	The String array

	Array properties

	Structure of an array
	Enumerations
	Address
	Mappings
	Summary

	Global Variables and Functions
	The var type variables
	Variables hoisting
	Variable scoping
	Type conversion
	Implicit conversion
	Explicit conversion

	Block and transaction global variables
	Transaction and message global variables
	Difference between tx.origin and msg.sender

	Cryptography global variables
	Address global variables
	Contract global variables
	Summary

	Expressions and Control Structures
	Solidity expressions
	The if decision control
	The while loop
	The for loop
	The do...while loop
	The break statement
	The continue statement
	The return statement
	Summary

	Writing Smart Contracts
	Smart contracts
	Writing a simple contract
	Creating contracts
	Using the new keyword
	Using address of a contract

	Constructors
	Contract composition
	Inheritance
	Single inheritance
	Multi-level inheritance
	Hierarchical inheritance
	Multiple inheritance

	Encapsulation
	Polymorphism
	Function polymorphism
	Contract polymorphism

	Method overriding
	Abstract contracts
	Interfaces
	Summary

	Functions, Modifiers, and Fallbacks
	Function input and output
	Modifiers
	The view, constant, and pure functions
	The address functions
	The send method
	The transfer method
	The call method
	The callcode method
	The delegatecall method

	The fallback function
	Summary

	Exceptions, Events, and Logging
	Error handling
	The require statement
	The assert statement
	The revert statement

	Events and logging
	Summary

	Truffle Basics and Unit Testing
	Application development life cycle management
	Truffle
	Development with Truffle
	Testing with Truffle
	Summary

	Debugging Contracts
	Debugging
	The Remix editor
	Using events

	Using a Block Explorer
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

