Terraform
for
Teenagers

SUITABLE FOR ADULTS

Introduction

What is Terraform?

Terraform is an Infrastructure as Code (IaC) tool developed by
HashiCorp. It allows users to define and provision cloud service
infrastructure using a simple and declarative configuration
language.

Why use Terraform?

Infrastructure Automation: Terraform automates the deployment
and management of infrastructure, reducing the risk of human
errors. State Management: Terraform maintains a state of the
infrastructure, allowing for predictable modifications and
deployments. Multi-cloud Support: Terraform can manage resources
across multiple cloud platforms, offering great flexibility.
Infrastructure as Code: Configurations are written in files that can be
versioned, reused, and shared.

Terraform
Installation

wget -0- https://apt.releases.hashicorp.com/gpg | sudo gpg --
dearmor -o /usr/share/keyrings/hashicorp-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-
keyring.gpg] htt ses. corp.com $(lsb_release
-cs) main"

sudo apt update & sudo apt install terraform

-0- https://apt.releases.hashicorp.com/gpg | sudo gpg --
-0 /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by o /keyrings/hashicorp-archive-

keyring //apt.releases.hashicorp.com $(1sb_release
-cs) main" Jetc/apt/sources.list.d/hashicorp.list
sudo apt update & sudo apt install terraform

brew tap hashicorp/tap
brew install hashicorp/tap/terraform

Terraform
Configuration

To be able to use Terraform, several prerequisites are needed in
addition to Terraform itself. First, a valid SSH key:

ls ~/.ssh/id_rsa.pub

ssh-keygen

For Terraform with Azure, you will also need Azure CLI on your
system : Install AzureCLI

For Terraform with AWS, you will also need AWS CLI on your system ::
Install AWS CLI

https://learn.microsoft.com/fr-fr/cli/azure/install-azure-cli
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Start with
Terraform

"azurerm" {
features {}
b

"azurerm_resource_group" "example" {
name = "example-rg"
location = "France Central"

The two files mentioned here are simple. But they serve to indicate
which provider you are going to use. Above: Azure, below: AWS. Due
to an unfair preference, everything will be done on Azure.

"al.'LI'S" {
region = “"eu-west-3"

}

"aws_vpc" "example" {
cidr_block = "10.0.0.0/16"

Name "example-vpc"

terraform init

az login

terraform init

What does terraform init do?

e Installation of Plugins: Terraform downloads and installs the
necessary plugins to interact with the specified providers in your
configuration (for example, Azure, AWS).

e Initialization of the Backend: If specified, configures the backend
for Terraform's state.

e Preparation of the Directory: Terraform prepares the working
directory for the execution of other Terraform commands.

A success message will indicate that the initialization was successful.
You are now ready to plan and apply your Terraform configurations.

terraform plan

terraform plan

What does terraform plan do?

e Configuration Analysis: Terraform analyzes your configuration
files to determine the resources to create, modify, or destroy.

e Display of Changes: Terraform presents an execution plan,
showing what will be changed in the infrastructure.

e Prevention of Surprises: This allows for reviewing changes before
applying them, reducing the risk of unexpected errors.

The plan displays additions (+), changes (~), and deletions (-). It is
crucial to read it carefully to ensure that the changes match your
expectations.

erraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:
create

erraform will perform the following actions:

azurerm_resource_group.example will be created
resource "azurerm_resource_group" "example" {

id = (kn after apply)
location = "fr ecentral"

name = "example-rg"

}

Plan: 1 to add, @ to change, @ to destroy.

terraform apply

terraform apply

What does terraform apply do?

e Confirmation of Changes: Before applying changes, Terraform
displays the plan and requests confirmation.

e Modification of the Infrastructure: If confirmed, Terraform
applies the changes to the infrastructure according to your
configuration.

e Update of the State: After applying the changes, Terraform
updates the state file to reflect the current state of the
infrastructure.

Terraform's state is crucial for maintaining alignment between your
configuration and the actual infrastructure. After each application,
Terraform updates its state file.

terraform destroy

terraform destroy

What does terraform destroy do?

e Display of Resources to Delete: Terraform displays a list of the
resources it plans to delete.

e Request for Confirmation: Before proceeding, Terraform requests
confirmation to ensure that you wish to delete these resources.

e Destruction of Resources: If confirmed, Terraform deletes all the
listed resources, thereby cleaning up the infrastructure.

This command is useful at the end of a project, for test environments,
or to completely rebuild an infrastructure. It is important to use it
with caution, as it deletes all managed resources.

State Management

Terraform uses a state file to keep track of the infrastructure and
configurations. This state file is crucial for Terraform's operation.

e The Terraform state file (terraform.tfstate) records the IDs and
properties of the resources created by Terraform. It is used to
map real resources to your configuration and to keep track of
metadata.

terraform state list

terraform show

Variables

L _
project/
globals.tfvars

environments/
L— dev/

main.tf
variables.tf

provider.tf

When a project becomes more substantial, it's important to start
architecting it. This involves beginning to separate different
resources, the definition of the provider, or the variables.

For the following example, we will revisit the file for creating
resources on Azure by moving the provider into provider.tf.

"azurerm" {

features {}

}

"azurerm_resource_group" "example" {
name = "exampl

location "France Central"

By moving the resource group into the file main.tf, we achieve this
setup. However, envisioning a world with multiple environments, we
will extract the variables name and location to place them in the file
global.tfvars.

"example-rg"

1on = "France Central”

Variables

variable "resource_group_name" {

description = "The name of the resource grouf

type = strirg

variable "'Locatiol’l" {
description = "The global location for the resources"
type = string

}

variable "name_prefix" {

description = "Prefix for the resource group name in the
development environment”

default = "dev-"

type = string

}

We create the file variables.tf (mentioned above) and modify the
main.tf. As our architecture is divided by environment, we prefix its
name with "dev-".

[T

"azurerm_resource_group example" {
name = "${var.name_prefix}${var.resource_group_name}"
location = var.location

Variables

cd environments/dev

terraform init

terraform plan -var-file="../../globals.tfvars"

terraform apply -var-file="../../globals.tfvars"

resource 'azurerm_resource_group example" {
id (known after apply)
location francecentral
name dev-example-rg

to add, @ to change, 0 to destroy.

Prevent Destroy

Terraform allows marking a resource to prevent its destruction
through the lifecycle.prevent_destroy attribute within the resource
block. However, this attribute must be used with caution, as it makes
manually destroying the resource difficult without modifying the
Terraform code.

"azurerm_resource_group" "example" {

However, this action will create an error during a destroy operation.
Therefore, you will need to rethink the architecture of your
Terraform project to group permanent resources together and place
temporary resources on the other side.

Modules

e_rg_module/
tf
LT

variables.tf

Modules allow for the reuse of code snippets in different projects or
parts of a project.

Organization: They help organize and structure Terraform code in a
more readable and maintainable way.

Encapsulation: Modules can encapsulate complex logic, exposing only
the necessary parameters as inputs and outputs.

Modules

azure_rg module

main.tt
resource "azurerm_resource_group" "example" {
name var.resource _'J roup_name

location var.location

"resource_group_id" {
value = azurerm_resource_group.example.]
= "The ID of the created resource group"

1ables. tf
"resource_group_name" {
tior "The global name of the resource group"

"location" {
tior "The global location for the resources”

Modules

At the root, in the main.tf file, we declare the module that we created
by passing the variables directly as parameters.

The output allows logging the creation of the resource group.

"azure_rg_module_first" {
‘modules/azure_rg _module"
mpe-rg"

location "France Central"

"premier_groupe_resource_id" {

value = module.azure_rg module_first.:

terraform init

terraform plan

terraform apply

Conditions

Terraform allows the use of logical conditions in configurations by
using a combination of variables and the ternary operator. This
enables dynamic adjustment of the configuration based on certain
conditions.

variable "create_resource" {
description = "A flag to create or not a resource"
type
default

resource "azurerm_resource_group" "example" {

count = var.create_resource ?

name "example-resource-group”

location "West Europe"

Loop for

Create a resource, for example, a network security group, and use a
for expression to generate tags.

le "instance
= list(s
ault = ["instancel”, "instance2", "instance3"]

"ce "azurerm_network irity_group" "example" {

> "${name}-

In this example, for each instance name in var.instance_names, a tag
is created where the key is the instance name and the value is a
combination of the instance name and a suffix (for example,
"instancel” becomes "instancel-security").

Loop for each

for_each is used to iterate over each element of a map or a list,
creating an instance of the resource for each element.

map(string)
{
el”

"instance2" =

"instanc

Here, for_each creates a VM for each element in var.instance_tags,
using the key for the name and the value for the tag.

Dynamic block

Consider the creation of multiple rules in a network security policy,
where the number of rules is variable.

variable "nsg_rules" {
description = "List of security rules to apply to the NSG."
type = list(object({
name = string
priority = number
direction = string
access = string
protocol string
source_port_range = string
destination_port_range = string
source_address_prefix string
destination_address_prefix string
1))
default
{
name = "allow-http"
priority 200
direction = "Inbound"
access = "Allow"
protocol = "Tep"

source_port_range *
destination_port_range
source_address_prefix
destination_address_prefix

B

{
name "deny-outbound"
priority 300
direction "Outbound"
access = "Deny"

protocol *
source_port_range
destination_port_range

source _address prefix

destination_address_prefix

Dynamic block

In this example, nsg_rules is a variable that contains a list of objects,
each object representing a specific network security rule for the
Azure security group using dynamic blocks in Terraform, thereby
providing a flexible and powerful method for managing network
security configurations in Azure.

"azurerm_network_security_group" "example" {
name = "example-nsg"
location var.location
azurerm_resource_group.example.name

lamic "security_rule" {
for_each = var.nsg_rulec

security_rule.value.
security_rule.value.|
security_rule.value.direc
security_rule.value.access
protocol security_rule.value.protocol
:QUYrCe_port_ra
security_rule.value.sourc
destination _port
security_rule.value.des
source_addres
security_rule.value.sourc
destination address prefix
security rule.value.destinatior
}
}
t

Terraform Registry

Terraform offers a public registry available here :
https://registry.terraform.io/

Using them is relatively simple, and a simple "terraform init" after
having configured them in your project allows their use.

The following example does exactly the same thing as in our previous
examples using this module:
https://registry.terraform.io/modules/getindata/resource-
group/azurerm/latest

1 N
1

on = "France Central"

"example-rg-from-module"

https://registry.terraform.io/
https://registry.terraform.io/modules/getindata/resource-group/azurerm/latest
https://registry.terraform.io/modules/getindata/resource-group/azurerm/latest

"vault_generic_secret" "password" {
yath = "secret/data/azure/db"

"azurerm_sql_server" "example" {
"example-sglserver"

dZU 1"E"I"|'|"|_I‘ESDUI'CE‘_§I'OLJ[_] . example . Nname
|_ pcat 1 on

dZurerm_resource_group. example . LOCA

volma | trator | _ "Sqladlﬂlﬂ“

data.vault_generic_secret.password.data["password"]

1
(f

Vault can be used with Terraform to securely manage the secrets or
sensitive data needed in your Terraform configurations.

Terraform has a Vault provider that allows reading information
from Vault and using it in your Terraform configurations.

Consul

provider "consul" {
= "consul.mycompany.com"
datacenter "del”

"consul_keys" "app_config" {
key {
path = "config/myapp/port"

resource "azurerm_virtual_machine" "example" {

name "example-vm"

location -
azurerm_resource_group.example.location

resource_group_name = azurerm_resource_group.example.name

network_interface_ids =
[azurerm_network_interface.example.id]

vm_size = "Standard_DS1_v2"

os_profile {

computer_name = "hostname"
admin_username = "adminuser"

.consul_keys.app_config.var.port

Consul can be used with Terraform to store configurations or to
discover services and IP addresses within your infrastructure.

In the same
collection

Helm for
Teenagers

Docker for

for
tffﬁgf? Teenagers

Terraform
for
SSSSSSSSSSSSSSSSS Teenagers

O ANTONYCANUT
m ANTONY KERVAZO-CANUT

S)

https://github.com/AntonyCanut/AntonyCanut/tree/main/For%20Teenagers
https://www.linkedin.com/in/antonykervazocanut/

