

The Path to GitOps | 2

Contents

05	 Foreword

07	 Introduction

08	 Chapter 1–What is GitOps?
		 Origins in DevOps
			 Kubernetes and containers
			 Cloud-Native DevOps
			 A DevOps Operating Model
		 GitOps Principles
			 Declarative
			 Versioned and Immutable
			 Pulled Automatically
			 Continuously Reconciled
		 GitOps and CI/CD
	 	 	 Traditional CI/CD Workflows
	 	 	 Where does GitOps fit in?
			 Operations via Pull Request
		 Summary

14	 Chapter 2–Tools of the Trade
		 Infrastructure as Code
			 History of Infrastructure as Code
		 	 Challenges of Infrastructure as Code
			 Containers Change the Game
		 Argo CD
		 Flux
		 Open Cluster Management
		 Other GitOps Tools
			 PipeCD
			 Keptn
			 Pulumi Kubernetes Operator
		 Summary

18	 Chapter 3–Templating
		 Everything in Git
		 Kustomize
		 Helm
		 Operators
		 Combining Tools
		 Summary

The Path to GitOps | 3

Contents

22	 Chapter 4–Git Workflows
		 Separate Your Repositories
		 Separate Development in Directories, Not Branches
		 Trunk-Based Development
		 Policies and Security
		 Summary

25	 Chapter 5–Repository and Directory Structures
		 Best Practices
			 DRY
			 Parameterize Where You Need To
		 Repository Considerations
			 Monorepo
			 Polyrepo
		 Directory Structures
	 	 	 Repositories Reflecting an Organizational Boundary
			 Kubernetes Platform Administrator
			 Kubernetes Application Developer
			 Other Boundaries
			 GitOps Repo Example
		 Conclusion

33	 Chapter 6–CI/CD with GitOps
		 CI and CD Can Be Decoupled
			 Integrating Synchronous and Asynchronous Tools
		 CI Managed
	 	 	 Benefits
	 	 	 Drawbacks
	 	 CI Owned and CD via GitOps
	 	 	 Benefits
	 	 	 Drawbacks
	 	 CI Triggered and GitOps Owned
	 	 	 Benefits
	 	 	 Drawbacks
		 A Mindset Shift
		 Conclusion

The Path to GitOps | 4

Contents

37	 Chapter 7–Handling Secrets
		 Common Patterns
		 Storing Encrypted Secrets
			 Sealed Secrets
			 Challenges of Storing Encrypted Secrets
		 Storing Secret References
			 External Secrets
			 Challenges of Storing Secret References
		 Conclusion

41	 Chapter 8–Other Considerations
		 Multicluster Management
		 Non-Declarative Infrastructure
		 Security
			 Base Image Selection
		 Everything as Code
		 Conclusion

45	 About the Author

The Path to GitOps | 5

Foreword

In May 2018, I recorded a podcast [1] to talk about tools in the Kubernetes space.
Specifically, continuous integration (CI) and continuous delivery (CD) tooling. My
mindset at the time was, “We can do better.” We had new, declarative tools for
infrastructure and a new paradigm to work. However, there weren’t many tools that
had fully embraced Kubernetes natively. But a line in that podcast set the course
for where I wanted things to head: “To me, GitOps is the holy grail of software and
infrastructure management.”

At the time, someone was trying to do better: A small, scrappy startup called
Weaveworks. They’re the ones who coined the term GitOps in 2017. Our futures
would be entwined for a significant time after that podcast.

Fast forward to August 2019, and I was making an internal move at Red Hat from
the Ansible team to the OpenShift (Red Hat’s Kubernetes product) team. That was
when I was introduced to Christian Hernandez. A font of Kubernetes knowledge,
Christian would take the lead on building out some of the most complex systems
our team could develop.

Not only that, he saw a lot of potential for Kubernetes and was looking for ways to
extend it even further. In CustomResourceDefinitions (CRDs), Kubernetes users
had a way to create all sorts of technology on Kubernetes clusters using familiar
patterns. A more refined way to manage configurations and declare the state of
everything in a given Kubernetes cluster called GitOps is something that Christian
embraced wholeheartedly.

Fast forward again to 2020, and we struggled to adjust to life in a pandemic. Meeting
customers one-by-one via the communication platform du jour wasn’t scalable.
Our team started live streaming, and on October 9, 2020, Christian and I hosted our
first stream about GitOps [2]. It received very positive feedback and later became
a recurring show. Eventually, this work led us to the Cloud Native Computing
Foundation’s GitOps Working Group (and later the OpenGitOps project).

By then, GitOps was a topic everyone wanted to know about. Suddenly, we were
asked to spur discussions about GitOps methodologies and practices. We were
asked to share our patterns for practicing GitOps, and to brain-dump the details
into meetings, documents, glossaries, and more. We built the GitOps Principles [3]
based on knowledge and feedback from a wide swath of industry experts. We
organized multiple workshops and GitOpsCons and attended regular meetings to
help shape GitOps.

The entire time, Christian Hernandez established himself as one of the preeminent
experts in GitOps. He deftly fielded questions about the topic live on-air and
answered them more often than not as if this were second nature. Christian
embodies GitOps and applies it where it makes sense, so by following his
implementations, you will adopt DevOps practices in the process.

The Path to GitOps | 6

GitOps works both at a small level and on a colossal scale. With GitOps, your releases
can measure in the hundreds per day. It quickens developer loops so much that often,
features land in production that same day. All the golden metrics you track will improve,
and morale along with it.

Christian has built out a lot of the foundation of GitOps. If you asked me for the
best source of GitOps knowledge, I’d say you’ve found them already.

—Chris Short
Co-chair, OpenGitOps/GitOps Working Group
July 2022

References
[1]	 https://thenewstack.io/the-best-ci-cd-tool-for-kubernetes-doesnt-exist/

[2]	 https://youtu.be/UvwcVNv61Mo

[3]	 https://opengitops.dev/#principles

Foreword

The Path to GitOps | 7

As Christian was writing this book, I had the pleasure of learning alongside him, re-
viewing his practices, and testing them directly in my setups along the way. Examining
the strategies he created while helping to mature our customer base, it was clear that
Christian had developed a strong starting point for organizations looking to build
their own GitOps practices. I’m really excited to see those practices summarized for
the masses here in The Path to GitOps.

Toward the end of writing The Path to GitOps, Christian decided to pursue a new
role outside of Red Hat. While we’re sad to see him go, we’re also celebrating the
opportunity he’s taken to continue to influence and evolve the GitOps community.
We’re excited to share Christian’s enthusiasm for GitOps here in his first book, and
we’ll continue to support him and cheer him on as he continues to share his exper-
tise across the GitOps community.

—Natale Vinto
Senior Principal Developer Advocate, Red Hat
Author, Modernizing Enterprise Java and GitOps Cookbook (O’Reilly Media)
July 2022

Introduction

The Path to GitOps | 8

Chapter 1

What is GitOps?

GitOps has quickly become the tech industry’s latest buzzword. Yet, when you
search for GitOps, you will likely be presented with a lot of familiar concepts that
seem unrelated. Is GitOps something that application developers use? Is it for infra-
structure folks or system administrators? Is it something you can buy off the shelf?
Or is it just a fancy new term for DevOps [1.1], or continuous integration/continuous
deployment (CI/CD) [1.2]?

As a matter of fact, GitOps unifies a collection of different topics in automation,
application delivery, infrastructure management, and security. In this chapter, I will go
through each aspect of GitOps. By the end of the chapter, you will have a better under-
standing of what GitOps means, what it is, what it isn’t, and more importantly, have it
demystified for you.

Origins in DevOps
Discussions of GitOps naturally start with DevOps, a term on which GitOps is clearly
based. Around 2007, many developers and site administrators began to identify gaps in
application development processes. Although the DevOps movement officially started
around 2007, I believe its true birth can be traced back to February 2001, when the
Agile Manifesto [1.3] was published.

In many ways, the Agile Manifesto is the grandfather of DevOps. Agile development
practices were a big step toward improving the application development process for
the end user and for internal or external customers.

However, while Agile focused on customer and developer experience, the process of
delivering that software was still stuck in old methodologies like waterfall. The process
was speeding up, so the delivery of that software had to change to catch up.

The DevOps movement was born out of the need to automate application delivery. It
allows the teams that wrote, delivered, and supported the software to work together in
service of that goal. DevOps isn’t necessarily a department, but rather a culture in your
organization.

Kubernetes and containers

So how does GitOps fit with DevOps? That’s simple: GitOps is DevOps. GitOps is the
natural progression of DevOps, and it implements the best of what DevOps practi-
tioners were already doing—they just didn’t know it yet.

Containers [1.4] are the groundbreaking technology that has created the newest
versions of DevOps. The Kubernetes [1.5] container platform, in particular, has
fostered a whole new way of thinking about application deployment, because con-
figuration files are used to declare the creation of container instances and dictate
how the platform goes on to deploy or delete them. Thus, Kubernetes and contain-
ers created new challenges for DevOps, as well as new tools for carrying out the
DevOps vision.

Chapter 1 – What is GitOps?

The Path to GitOps | 9

Weaveworks [1.6] is credited with pioneering the GitOps model. The story, de-
scribed in a 2021 blog post [1.7], is very interesting. Back in 2017, Weaveworks was a
Software-as-a-Service (SaaS) company that hosted applications on their platform
using Kubernetes as the infrastructure layer managing the applications. One day
there was an incident where a configuration change took down their entire hosting
platform, but the DevOps engineers were able to bring back the system in about 40
minutes. When asked how they did it so quickly, they described their process, which
Weaveworks CEO and cofounder Alexis Richardson called “GitOps.”

The DevOps engineers over at Weaveworks came up with a system that allowed them
to return their entire platform (not just the workloads running on them) back to its
original state. They essentially implemented infrastructure as code by keeping every-
thing they wrote (including configurations) stored and versioned in Git, and by taking
advantage of declarative configurations in Kubernetes.

Cloud-Native DevOps

So if GitOps isn’t anything new, why are we hearing so much about it now? Much like
how the Agile Manifesto changed the game for developers and administrators, Kuber-
netes and other container technologies have changed the game for DevOps practi-
tioners. The ways in which Kubernetes and cloud-native systems manage immutable
instances (containers) have allowed DevOps practitioners to further refine their
practices.

If DevOps is the culture, GitOps is the operating model that is best suited for cloud-na-
tive architectures. So, although GitOps isn’t necessarily new, it certainly feels that way
because Kubernetes is still an evolving topic in the industry.

A DevOps Operating Model

Kubernetes uses a declarative model to define instances and automate their deploy-
ment. You can think about Kubernetes as a set of APIs that uses state as a central point
of deciding what and how to operate on something. Kubernetes controls the operating
environment by comparing the declared (desired) state of an object to the current
running state. If these states differ, Kubernetes reconciles those differences.

To understand reconciliation, it’s useful to understand the terms drift and autohealing.
If you declare that ten instances of your application should be running, but two fail in
production, leaving only eight, your running state has drifted away from the desired
state. If your DevOps process automatically detects the drift and starts two new in-
stances, it is autohealing.

Kubernetes can achieve autohealing because containers are fungible and immutable. A
container can be restarted or scaled at will, making it easy to manage workloads in this
model.

It is important to grasp these Kubernetes concepts because GitOps is also based on
this model. Thus, GitOps is the DevOps operating model that is used with Kubernetes
and cloud-native architectures. Kubernetes lends itself to GitOps, and many GitOps
principles are built on Kubernetes patterns.

GitOps Principles
In November 2020, Amazon, Codefresh, GitHub, Microsoft, and Weaveworks
announced the creation of the GitOps Working Group. This working group was
meant as a way for interested parties to get together and define what “GitOps”

Chapter 1 – What is GitOps?

The Path to GitOps | 10

actually means, under the Application Delivery special interest group (SIG) in the
Cloud Native Computing Foundation (CNCF) [1.8]. By the end of 2020, the GitOps
Working Group was bootstrapped and became an official working group within the
Application Delivery SIG.

In March 2021, the GitOps Working Group formed OpenGitOps [1.9] as a founda-
tion for establishing interoperability between tools, conformance, and certification
through standardized documents and code. OpenGitOps is currently a sandbox
project within the CNCF.

In October 2021, the GitOps Working Group released the OpenGitOps Principles [1.10],
a set of principles for managing software systems. We’ll look at the four major princi-
ples in the sections that follow.

Declarative

The first OpenGitOps principle states:

	 A system managed by GitOps must have its desired state expressed declaratively.

There are a few things to note here. First, a system in this context is defined as one or
more runtime environments consisting of resources under management, the manage-
ment agents within each runtime, and the policies for controlling access and manage-
ment of repositories, deployments, and runtimes.

Second, note the reference to the desired state. This means that you represent the way
you want the system to work in an “end state,” which will be the final state achieved by
changes made by the GitOps environment.

Lastly, the desired state must be declarative. The state of a system is stored as a set of
declarations without procedures for how that state will be achieved.

Although you can store your declarations in any format, we will be focusing on YAML [1.11]
for Kubernetes in this book.

Versioned and Immutable

The second OpenGitOps principle is:

	� Desired state is stored in a way that enforces immutability and versioning and that
retains a complete version history.

The canonical example of the “versioned and immutable” principle is Git, which is
why it’s the first element in the term GitOps. Git’s store is versioned and immutable
because each change is tracked in a new version without altering previous versions
(except if the user requests a change explicitly, an extreme and rare event). So you
can revert back to a previous version while preserving an audit of all the changes
that have been made.

Although Git is a good example of this principle, you don’t need to use Git as your
state store. Anything that complies with this principle can be used in GitOps (S3
storage, for example). However, in this book we will be focusing on using Git as the
state store.

Chapter 1 – What is GitOps?

The Path to GitOps | 11

Pulled Automatically

The third principle states:

	 Software agents automatically pull the desired state declarations from the source.

This principle is where GitOps starts to differentiate itself from a traditional event-driv-
en process (more on that in the next section).

Although triggering changes and updates via webhooks or other events is a valid way
to automate builds, it’s not GitOps. GitOps software agents (which I sometimes call
GitOps controllers) check the desired state by pulling declarations from the state
store at regular intervals, which means polling as well as pulling. In GitOps, there is no
webhook that needs to be hit. Instead, there is a reconciliation loop. This design leads
to the final principle.

Continuously Reconciled

The fourth and final principle is another way that GitOps differentiates itself from
event-based workflows:

	� Software agents continuously observe actual system state and attempt to apply the
desired state.

This principle directly mirrors the functions of the Kubernetes controllers, but GitOps
applies it to a whole application or infrastructure stack instead of just one object. We’ve
seen that the desired state is pulled from configuration information that is versioned
and stored in an immutable storage system. If there is a difference between the de-
sired and running states, they are reconciled by changing the running state. And this is
happening continuously at a regular interval. “Continuous,” here, is understood in the
industry to mean that reconciliation continues to happen at a chosen interval of time.
Reconciliation doesn’t have to be instantaneous.

Continuous reconciliation distinguishes GitOps from traditional CI/CD, where auto-
mation is generally driven by pre-set triggers. GitOps triggers reconciliation whenever
there is a divergence. I explain where GitOps fits into CI/CD in the next section.

GitOps and CI/CD
CI/CD is one of the prominent practices in the DevOps movement. This practice
delivers applications at frequent intervals to internal or external customers by auto-
mating stages of application development. The main concepts attributed to CI/CD
are continuous integration, continuous delivery, and continuous deployment.

If GitOps is just an extension of DevOps, then where does GitOps fit into the CI/CD
workflow that has traditionally been the cornerstone of DevOps practitioners? I’ll try
to answer that question in this section.

Traditional CI/CD Workflows

In a previous section, we introduced traditional CI/CD as being event-driven. This
should be familiar to anyone who has been in the software industry.

Chapter 1 – What is GitOps?

The Path to GitOps | 12

As shown in Figure 1-1, traditional CI/CD is very linear, basing each stage on previous
ones. That’s why the term commonly used for the CI/CD build/test/deploy process is
a pipeline. It can provide integration, delivery, and deployment in a continuous stream
of releases.

Figure 1-1: The CI/CD workflow.

Continuous integration builds and tests new code changes and merges them into a
shared repository on a regular basis. CI is a form of rapid development that emerged as
a result of the Agile Manifesto. CI is also a solution to the problem of having too many
branches of an application, which might conflict with one another, in development at
the same time. Commit early and often.

Continuous delivery refers to automating releases of changes to the dev/staging and
pre-production environments. The changes can then, with the approval of the oper-
ation teams or release managers, get deployed to production. This aspect of CD is an
answer to the problem of poor visibility and communication between development and
business teams. It also automates the manual steps that slow down application delivery.

The purpose of continuous delivery is to deploy new code with minimal effort. Normally
when people think of CI/CD, it stops at continuous delivery, where someone makes a
commit and sees those changes relatively quickly in a dev/staging environment.

Continuous deployment takes continuous delivery one step further, deploying the
changes into actual production (after they pass automated tests). Continuous deploy-
ment supersedes continuous delivery and is now seen as full DevOps automation.

Where does GitOps fit in?

GitOps doesn’t replace CI/CD, but participates in it. While traditional tools like Jenkins
and CloudBees focus on the entire CI/CD process, GitOps focuses on the CD aspect
(both continuous deployment and continuous delivery). So now, instead of having
deployment of your application be imperative in your CI/CD platform, it can be declar-
ative based on a source of truth. Based on a reconciliation loop, the GitOps controller
makes changes to the cluster by deploying new instances, once those changes have
been committed to the state store.

How a deployment is done will be described in later chapters. But I can describe it here
at a high level.

Under GitOps, the CI process just needs either to make a commit directly to your state
store or to mark that the change is ready for deployment in a Git repository. In other

Chapter 1 – What is GitOps?

The Path to GitOps | 13

words, if you’re in GitHub [1.12], the recommended way to trigger deployment is by
submitting a pull request; in GitLab [1.13] it’s by submitting a merge request (the same
idea with a different term).

Once merged, the change will be propagated by the GitOps controller. What’s powerful
about this method is that you no longer have to wait for the CI/CD process to finish
before detecting and correcting drift. The GitOps controller acts as both an application
delivery mechanism and a drift detection/autohealing process.

Operations via Pull Request

GitOps isn’t just for developers; it’s for administrators too. Since GitOps is a working
model for DevOps on cloud-native infrastructures, everyone is (and should be) in-
volved in the process. Administrators can take advantage of this automation, and those
familiar with infrastructure as code will feel very comfortable in this new model.

The idea of GitOps is to apply the same workflow to any change that goes into in-
frastructure and applications. Changes are proposed by issuing a pull request to the
respective Git repository. After reviews and approval, the change gets merged into the
repository which is then applied to the target infrastructure. The complete history of
the changes, review process, and deployment is visible through the Git history.

Modeling developer workflows for operations is a bit tricky, especially for those coming
from more traditional working models. Although you’re modeling infrastructure man-
agement after developer workflow, they aren’t identical. Later on in this book, we’ll go
over how Git workflows for the infrastructure differ from the Git workflows from the
application.

Summary
In this chapter, we introduced GitOps as a practice, took a quick look at its history, and
showed its relationship to the DevOps movement and CI/CD. We then explored how
Kubernetes was the catalyst for refining how we operate our infrastructure and applica-
tion deployments today. We also took a look at the GitOps principles as defined by the
OpenGitOps Sandbox project.

The next chapter introduces the basic tools for GitOps, notably Argo CD and Flux.

References
[1.1]	 https://developers.redhat.com/topics/devops

[1.2]	 https://developers.redhat.com/topics/ci-cd

[1.3]	 https://agilemanifesto.org/history.html

[1.4]	 https://developers.redhat.com/topics/containers

[1.5]	 https://developers.redhat.com/topics/kubernetes

[1.6]	 https://www.weave.works

[1.7]	 https://www.weave.works/blog/the-history-of-gitops

[1.8]	 https://www.cncf.io

[1.9]	 https://opengitops.dev

[1.10]	 https://github.com/open-gitops/documents/releases/tag/v1.0.0

[1.11]	 https://www.redhat.com/en/topics/automation/what-is-yaml

[1.12]	 https://github.com

[1.13]	 https://gitlab.com

The Path to GitOps | 14

Chapter 2

Tools of the Trade

In this chapter, we will go over the various tools used most often to manage GitOps
workflows. Many of the tools were developed to fill a gap in earlier tools used in In-
frastructure as code (IaC). Therefore, we will go over a brief history of Infrastructure as
code, then examine the tools that arose from the IaC paradigm. We will also discuss
the most popular GitOps tools, what they have in common with each other, and the
benefits they offer.

Infrastructure as Code

Infrastructure as code is a method for managing, configuring, and updating the entire
software infrastructure at a datacenter using configuration files that are both ma-
chine-readable and human-readable. The configuration files are machine-readable in
a structured format (usually YAML) so that software tools can read them to automate
changes. They are also human-readable so that administrators can maintain them easily
and immediately understand what they define. You can think of configuration files as
the “code” for the infrastructure.

Thus, Infrastructure as code lets administrators leave behind manual processes and
avoid the drudgery of entering fields into a web form. Instead, they use configuration
files to manage every component of the datacenter, from bare metal servers to virtual
machines to networking equipment.

Automation reduces workload and prevents casual errors. However, its main benefit is
scalability; the process can manage thousands of nodes and dozens of datacenters.

History of Infrastructure as Code

Infrastructure as code grew from the need to scale up quickly in the cloud. Amazon
Web Services launched its Elastic Compute Cloud (EC2) in 2006, letting clients scale
their infrastructure on demand. EC2 soon became popular, creating a new widespread
problem: Administrators couldn’t scale their application instances to take advantage
of the seemingly unlimited amount of compute resources provided by cloud comput-
ing. The old methods of managing and configuring infrastructure wouldn’t work at a
massive scale.

The advantages of Infrastructure as code are cost and speed. The cost aspect can be
broken down into staff capacity and the amount of time spent configuring and manag-
ing systems. The concept “do more with less” applies here. With IaC, you no longer need
to hire at a “person per node” ratio. Removing the need for manual configuration frees
up administrators to do other things.

IaC gives you vastly more speed because you can manage thousands of nodes all at
once. You also reduce the risk that could be introduced by human error, because all the
nodes get the same configuration.

As IaC grew in popularity, it helped drive the rise of the DevOps movement. Many
new tools emerged as a result, including Chef, Ansible, Terraform, and CFEngine.
One of the most popular tools was Puppet, which provided a way to configure
systems in a platform-agnostic way. Any variations in the platform could be rep-
resented in Puppet as structured fields with variables that could take on different

Chapter 2 – Tools of the Trade

The Path to GitOps | 15

values for different operating systems, types of servers, etc. Thus, Puppet adopted
a declarative model that we saw in the previous chapter as being central to Kuber-
netes and GitOps. The declarations were much easier to maintain than specifying
the actual commands to run, which is imperative (although both models were still
possible). .

Challenges of Infrastructure as Code

With all the popularity and usefulness of IaC, it does come with some drawbacks. There
is definitely overhead to managing your system as code. Sometimes there are thou-
sands upon thousands of lines of code that you need to go through, so issues aren’t
immediately obvious. Also, one mistake can have a huge impact on your infrastructure,
and rollback can take some time to propagate.

IaC adds convergence time as well. If there’s a drift in your system, it won’t get fixed
until the next time you run your IaC tool. You can set the tool to run at regular intervals
or when your workflow triggers a change. But the idea behind IaC is to make it mostly
event-driven. In other words, changes to your platform should adapt to changes auto-
matically instead of requiring human intervention.

There is also the issue of idempotency, which refers to a change that can be applied
over and over again with identical results. For instance, a command that updates
a field in a database to a fixed value can be issued multiple times safely. Doing so
might be wasteful, but the result is the same each time, so the operation is idempo-
tent. In contrast, adding a line to a log file leaves multiple lines for the event, so it is
not idempotent.

This issue doesn’t seem obvious at first, because the system can usually rerun the com-
mands that carry out the declaration. But suppose the commands try to update a local
database on a system where a schema change had occurred, or after an administrator
had deleted the whole database. In those scenarios, the command will fail.

So, the mutability of servers and virtual machines is the biggest challenge to IaC. This is
where containers provide an advantage.

Containers Change the Game

Containers represent a totally different view of continuity in your infrastructure. You
make software changes not by updating an existing configuration, but by deleting the
whole virtual system and creating a new container. So in the example of updating a
database in the previous section, Kubernetes heals the system simply by starting a new
set of containers. That’s it.

To get the same behavior from IaC and fixed servers, the IaC tool would have to
destroy the node and recreate it every time there is immutable drift, which isn’t too
practical. This is the advantage that Kubernetes gives you.

Argo CD
The first GitOps tool we’ll discuss is Argo CD [2.1]. Argo CD was written with GitOps
in mind, to deliver changes to a Kubernetes cluster at massive scale. It detects and
prevents drift in your Kubernetes clusters by working with raw YAML stored in a Git
repository and using the apply functionality in Kubernetes.

Argo CD can also work with Helm [2.2] and Kustomize [2.3] to render the YAML
produced by those tools before applying them to the Kubernetes cluster. (We’ll look
at Helm and Kustomize more closely in upcoming chapters.)

Chapter 2 – Tools of the Trade

The Path to GitOps | 16

Argo CD is part of a larger ecosystem called the Argo Project [2.4]. It maintains a suite
of tools that also includes Argo Workflows, Argo Rollouts, and Argo Events. Argo Labs
serves as an incubator for other tools related to Argo, which can be used together or
standalone.

Argo CD is one of many tools under the Argo Project umbrella that came from Intu-
it’s acquisition of Applatixt [2.5]. Argo CD was created to fill a need in the company’s
infrastructure. Later, Intuit decided to release the Argo Project toolsets as open source.
Since then, many companies, including Akuity, BlackRock, Codefresh, and Red Hat,
have become part of the Argo community as active maintainers. Argo CD currently has
incubating status in the CNCF.

Flux
In the chapter What is GitOps? I told the story of how Weaveworks recovered from an
outage, inspiring cofounder Alexis Richardson to coin the term “GitOps.” Flux (and
Flagger) were tools that emerged from that environment to help people on their Gi-
tOps adoption journey.

Flux performs many of the same functions as Argo CD, but it is different in a lot of ways.
The main difference is that Flux uses the Helm Golang [2.6] package. Flux doesn’t
render the YAML, but instead deals with Helm directly. This design gives users a familiar
feel if they are already using Helm often.

Originally, Flux was built as a monolithic “do it all” operator modeled after what
Weaveworks felt that it meant to do a GitOps workflow. With Flux version 2, the
functions were broken up into individual components, called the GitOps Toolkit,
and were based on controllers. These components include the source controller,
the Kustomize controller, the Helm controller, the notification controller, and the
image automation controller.

Flux was born out of the best practices and use cases from site reliability engineers
(SREs) over the years at Weaveworks. It is now widely adopted by many companies [2.7]
and continues to grow as the popularity of GitOps grows. Flux currently has incubating
status in the CNCF.

Open Cluster Management
Open Cluster Management (OCM) [2.8] is the upstream project used by Red Hat Ad-
vanced Cluster Management for Kubernetes [2.9]. OCM has its roots in IBM Multicloud
Manager. The tool goes beyond just applying YAML and detecting drift: It also manages
the lifecycle of your Kubernetes cluster. The idea behind OCM and Red Hat Advanced
Cluster Management is multicluster management from a single pane of glass. As with
other GitOps tools, you can use these to keep your cluster in sync with a Git repository
and detect and fix drift. But additionally, you can also manage the lifecycle of those
clusters. From creation to destruction and policy enforcement, OCM and Red Hat
Advanced Cluster Management take the idea of GitOps a step further and manage
clusters with IaC as well.

Other GitOps Tools
It’s worth mentioning several other tools that have emerged as the popularity of
GitOps has grown. Some of these are in the early stages of development and others
are solving a very specific problem.

Chapter 2 – Tools of the Trade

The Path to GitOps | 17

PipeCD

PipeCD [2.10]lets you manage and promote deployments from one environment to
another. Administrators use control planes to manage different deployments on one
cluster or many clusters, each one running a PipeCD agent. This control plane is state-
less. Its central task is to manage deployments on other clusters running the PipeCD
agents. The control plane manages authentication as well.

Keptn

Developed by Dynatrace, Keptn [2.11] was designed to provide visibility into your envi-
ronments. It aims to provide Service Level Objectives (SLOs) throughout the multi-
stage deployment–for example, response time must not exceed 200ms during peak
load). Keptn is meant to automatically set up environments (such as dev/staging/prod)
with gating based on metrics for your CI/CD workflows. You can also integrate testing
tools, do performance testing, chaos engineering, and more.

Pulumi Kubernetes Operator

The Pulumi Kubernetes Operator [2.12] is particularly interesting because it broadens
the Kubernetes idea of declarations to make them more appealing to developers. Usu-
ally, when administrators think of declarations within the context of Kubernetes, they
assume that the source code is YAML. Yes, the source of truth is stored in Git, and the
declarations are usually in YAML, but it doesn’t have to be. The Pulumi Kubernetes Op-
erator lets developers write declarations in their chosen language: Golang, TypeScript,
Python, etc. Instead of translating their infrastructure ideas into YAML, developers can
write the declarations in the language they use for the rest of the project.

Summary
In this chapter, we reviewed the origins of Infrastructure as code, along with its advan-
tages and shortcomings. We also saw how Kubernetes changed the game for Infra-
structure as code. We went through popular GitOps tools, what they have to offer, and
what choices you have when looking for a GitOps controller.

In this book, we will focus on Argo CD and Red Hat Advanced Cluster Management for
Kubernetes. However, this book is meant to be agnostic, so almost everything you will
read about can be applied to other tools.

References
[2.1]	 https://argoproj.github.io/cd/

[2.2]	 https://helm.sh

[2.3]	 https://kustomize.io

[2.4]	 https://argoproj.github.io/

[2.5]	 https://blog.argoproj.io/applatix-joins-intuit-7ab587270573

[2.6]	 https://go.dev

[2.7]	 https://fluxcd.io/adopters/

[2.8]	 https://open-cluster-management.io/

[2.9]	 https://cloud.redhat.com/products/advanced-cluster-management

[2.10]	 https://pipecd.dev

[2.11]	 https://keptn.sh

[2.12]	� https://www.pulumi.com/docs/guides/continuous-delivery/pulumi-kubernetes-
operator/

The Path to GitOps | 18

Chapter 3

Templating

When you first start out with GitOps workflows, you’ll notice something both-
ersome: you’re dealing with a lot of YAML. (Some folks use JSON, but the same
observation applies). In this chapter, we will see how to minimize the management
of these lengthy configuration files and go over some of the best available practic-
es and tools. Kustomize, Helm, and Kubernetes Operators all have roles to play for
some environments.

Everything in Git
The GitOps Principles [3.1] (specifically #1 and #2) declare that the system’s state
is immutable and is described declaratively. In a Kubernetes world, this means that
YAML manifests are stored inside Git. So the question often becomes, “How do I
declaratively describe my resources in Git without copying and pasting the same
YAML everywhere?”

It might seem like you’ll have to duplicate a lot of the same YAML after you consider
things like environments, clusters, regulatory restrictions, and anything else in your
organization that might force you to create a lot of YAML with only slight variations
between files. Luckily, there are tools that help you minimize this grunt work and
help you avoid duplicating manifests.

Kustomize
Kustomize is a framework for patching–or selectively altering–files, built into Kuber-
netes. It is a configuation manager that lets you customize untemplated YAML files
without touching the original YAML configuration file.

Kustomize is organized in a hierarchical directory structure of bases and overlays. A
base is a directory with a kustomization.yaml file containing a set of resources and
associated customizations. A base has no knowledge of an overlay and can be used in
multiple overlays.

An overlay is a directory with a kustomization.yaml file that refers to other Kustom-
ize directories as its bases. An overlay can draw from multiple bases. It composes all
resources from bases and can also add customizations on top of them. You can also
write kustomization.yaml files that build on one another (for example, a base can
refer to another base).

Figure 3-1 shows a typical use for Kustomize. A directory structure containing many
files is shown on the left, and excerpts from particular kustomization.yaml files on
the right.

Chapter 3 – Templating

The Path to GitOps | 19

Figure 3-1: Kustomize example.

In Figure 3-1, the base directory in the directory structure on the left contains the
kustomization.yaml file that is the foundation for the others. This file is made up of
a Deployment, a Service, and a Route (which could be replaced by an Ingress if you’re
using an ingress controller). These manifests are generally the same, and there are only
slight differences between them in the dev and test environments.

Now let’s do some customization. To render the YAML output for the dev environ-
ment, run:

$ kubectl apply -k apps/myapp/overlays/dev

The preceding command takes the base YAML and overlays what’s in the dev directory,
applying the resulting YAML into a Kubernetes cluster.

Kustomize validates YAML before deploying it and is agnostic regarding which GitOps
tools you choose (Argo CD, Flux [3.2], Anthos Config Management [3.3], etc.).

Kustomize is powerful because it eliminates needless duplication of YAML and enables
reuse through customization (patching). This means that you can store differences
as deltas instead of copying the YAML in multiple places. The hierarchical structure
provides flexibility by creating a series of overlays that can leverage other bases and
other overlays, cascading over a sequence of files. Those overlays can refer to remote
repositories as well.

Kustomize is included with Kubernetes, so there’s nothing else to install. This is the basis
of most structures and examples in this chapter.

Helm
Helm has become the de facto package manager for Kubernetes. If you’ve worked on a
Kubernetes cluster previously, there is a good chance that you have used Helm at some
point for its automation benefits. Helm provides not only a method of packaging an
application and parameterizing YAML manifests but also a templating engine that can
deploy your application to different environments.

Helm consists of charts, which are packaged and templatized versions of your YAML
manifests. You can inject values into the parameters defined in the templates, and
Helm injects these values into the manifests to create a release. A release is the end-

Chapter 3 – Templating

The Path to GitOps | 20

state representation of the YAML that is deployed to your Kubernetes cluster. The
information is stored as a secret on the Kubernetes cluster.

Figure 3-2 depicts each of these components.

Figure 3-2: Helm overview.

Helm has a large ecosystem and many repositories that end users can draw on to de-
ploy pre-built applications.

If your organization uses Helm heavily, you’re in luck! Most GitOps tools support de-
ploying Helm charts.

Operators
Operators aren’t exactly a tool to help avoid duplicating YAML, but they fit into this
chapter because they definitely can help. So what exactly are Operators?

Operators are built on top of Custom Resource Definitions (CRDs) [3.4] in Kubernetes.
A CRD lets you define a resource Kubernetes can manage that is not part of the core
primitives that Kubernetes is used to working with. For example, Kubernetes knows how
to work with pods, but what if you have resources in your environment that you want
Kubernetes to manage, such as virtual machines, databases, or load balancers? You can
tell Kubernetes to manage such resources with CRDs.

CRDs sometimes come under strain by the complexity of such resources. Imagine
you’re managing a database and you want Kubernetes to take care of backup, restore,
scaling, and schema changes–basically, run the resource on autopilot. This is where
Operators come in. Operators codify operational knowledge in a way that Kubernetes
understands.

Where do Operators fit in a GitOps world? And in the context of this chapter, where do
they fit with templating and eliminating the duplication of YAML? Because specific tools
exist for writing Operators (like the Operator SDK and KubeBuild), you can effectively
write the logic for how your application gets deployed. You can write the Operator with
this in mind and add the GitOps logic to your application. You can also use Kustomize
and Helm alongside your Operator.

Chapter 3 – Templating

The Path to GitOps | 21

Combining Tools
With all these options, what tool should you use? It’s not a question of “Kustomize ver-
sus Helm,” but rather “Kustomize and Helm.” Using Kustomize and Helm is a “yes and…”
and not an “or” conversation. Most of the time, you will use them in tandem. Take a look
at the Kustomized Helm [3.5] example from the Argo Project.

If you are using mainly raw Kubernetes manifest files, your best bet is to use Kustomize
as much as possible. It’s not only built into Kubernetes, but it’s built into many GitOps
tools as well.

Although you can do a lot with Kustomize, it’s not technically a templating engine–it’s a
patching framework. If you need to parameterize certain things or come from the Helm
world, you might think about either leaning all into Helm or starting to write Helm charts.

Helm is valuable when you want to parameterize your configurations instead of patch-
ing them. You usually parameterize when you don’t know something about the cluster
ahead of time (for example, the Ingress “host” field in the YAML). You can use Helm to
parameterize the configuration and just supply the values specific for that deployment.

While Kustomize was built as a patching framework, Helm was built from the ground up
as a templating engine. It also acts as a package manager, like DNF or apt-get. This
means you can start treating Kubernetes as your “cloud operating system” and have
Helm install your application as if it were packaged. Also, most GitOps tools support
both Helm and Kustomize.

Operators can help with snowflake situations when you need more logic put in place
beyond just applying a manifest. Operators can help by putting some declarative lan-
guage around your imperative actions. Also, you can simplify what you are storing in Git
by writing a lot of that complexity into the Operator. Since Operators are built on top of
Kubernetes CRDs, all GitOps tools work with them.

Keep in mind that you are storing the GitOps controller configs in Git as well. The
GitOps configurations should also be in Git and can be Kustomized, Helm-ized, or be
turned into an Operator. For example, you can use Argo CD to manage itself [3.6].

Summary
In this chapter, we went over some of the options at your disposal for templating and
patching your GitOps manifests. We went over how you can use Kustomize to natively
create overlays that only change the deltas between your environments, how Helm can
be used as a templating engine for your GitOps manifests, and how Operators fit into
the picture. The next chapter will cover how to structure your Git workflows to best
take advantage of GitOps.

References
[3.1]	 https://github.com/open-gitops/documents/blob/release-v1.0.0/PRINCIPLES.md

[3.2]	 https://fluxcd.io

[3.3]	 https://cloud.google.com/anthos/config-management

[3.4]	� https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
custom-resources/

[3.5]	� https://github.com/argoproj/argocd-example-apps/blob/master/plugins/
kustomized-helm/README.md

[3.6]	� https://argo-cd.readthedocs.io/en/stable/operator-manual/declarative-
setup/#manage-argo-cd-using-argo-cd

The Path to GitOps | 22

Chapter 4

Git Workflows

Your Git workflows are at the center of your GitOps deployments because work-
flows are the means of implementing your changes in your environment. When you
adopt GitOps, Git is not only your source of truth (as it is for most projects) but also
your interface into your environment. Developers have used Git workflows for their
application delivery method for years, and now operations teams will have to adopt
similar workflows.

But there are key differences between how you manage your code in Git and how you
manage your GitOps configuration in Git.

In this chapter, I go over these differences and describe the best practices you should
follow to make the best use of Git workflows for your GitOps deployments. We will see
how to separate your configuration from your code, how to use branches, how to use
trunk-based development workflows effectively, and tips for setting up policies and
security for your Git workflows.

Separate Your Repositories
There are a few things to keep in mind when setting up your Git workflows for your
GitOps directory structure and GitOps in general. The first is to keep your application
code in a separate repository from your YAML configurations. This might seem coun-
terintuitive initially, but most teams that start with code and configurations together
quickly learn it’s better to separate them.

There are a few reasons for separate repositories. First, you don’t want a configuration
change (such as changing the scale of a deployment from three to four nodes) to trig-
ger a rebuild of your application if your application code didn’t change. Another reason
is that the approval process of getting a change into an environment shouldn’t hold
back continuous integration of your code. In general, application code and configura-
tion information have independent lifecycles.

Also, many organizations separate the deployment process into several different
teams. A lot of the time, the operations or release management team takes care of the
application’s release. Although DevOps aims to reduce barriers between teams and
their activities, you don’t want one team’s process to slow down another.

Separate Development in Directories, Not Branches
Another best practice that surprises many programmers is to separate environments–
such as test and production–into different directories, but not create branches for
them. Like the separation of code and configurations, this principle might seem to go
against the grain of version control, but keeping track of environmental branches can
be a challenge.

One of the difficulties you might encounter if you manage workflows through branch-
es is that promotion from one environment to another isn’t as simple as a merge. You
can see this issue with a simple example of updating an image tag. The application
has been built, tested, and deemed ready to go from a sandbox environment to a test
environment. But updating the image tag comes with other changes you don’t want to
merge. What about the scale in the Deployment [4.1]? What about the ConfigMaps and

Chapter 4 – Git Workflows

The Path to GitOps | 23

Secrets? Those are bound to change in different environments and include things that
should not be merged into other environments.

In short, every environment has configuration details specific to that environment.
You can manually make the changes one by one or “cherry-pick” [4.2], but then your
“simple merge” is no longer that simple. When you’re constantly cherry-picking or
making manual changes, the effort level outweighs the benefits of trying to mirror
the application workflows.

Another danger of using branches and cherry-picking your way into production is
that this will likely introduce a significant drift. As you get further along in the life of a
software project, when it spawns hundreds of environments with dozens upon dozens
of applications, you can quickly see how cherry-picking and making manual changes
can get out of hand. You can no longer use a simple diff [4.3] to see the differences
between branches, as the differences will be astronomical.

In the world of Kubernetes, the Kustomize [4.4] patching framework, and the Helm [4.5]
package manager, using branches for environments is an antipattern. Kustomize and
Helm make using directories and overlays for your environments easier. Kustomize, in
particular, allows you to have a core set of manifests (called a “base” in Kustomize) and
store the deltas in directories (called “overlays” in Kustomize). You use these overlays
as directories with specific environment configurations in these directories.

So do you use branches at all? Yes, but not in the way you think. With GitOps, trunk-
based development has emerged as the development model for your configuration
repositories.

Trunk-Based Development
The recommended workflow for implementing GitOps with Kubernetes manifests
is known as trunk-based development [4.6]. This method defines one branch as the
“trunk” and carries out development on each environment in a different short-lived
branch. When development is complete for that environment, the developer creates a
pull request for the branch to the trunk. Developers can also create a fork to work on an
environment, and then create a branch to merge the fork into the trunk.

Once the proper approvals are done, the pull request (or the branch from the fork) gets
merged into the trunk. The branch for that feature is deleted, keeping your branches to
a minimum. Trunk-based development trades branches for directories.

You can think of the trunk as a “main” or primary branch. production and prod are
popular names for the trunk branch.

Trunk-based development came about to enable continuous integration and continu-
ous delivery by supplying a development model focused on the fast delivery of chang-
es to applications. But this model also works for GitOps repositories because it keeps
things simple and more in tune with how Kustomize and Helm work. When you record
deltas between environments, you can clearly see what changes will be merged into
the trunk. You won’t have to cherry-pick nearly as often, and you’ll have the confidence
that what is in your Git repository is what is actually going into your environment. This is
what you want in a GitOps workflow.

Policies and Security
Part of the challenge with trunk-based development is that now there is a single branch
where things can go wrong. When relying on Git as your source of truth, it can be quite
scary to depend on a single branch for not only your production environment but your

Note: I will discuss Kustomize
in detail in another chapter.

Chapter 4 – Git Workflows

The Path to GitOps | 24

organization as a whole. So you need to pay special attention to the features that
version control offers for policy management and security to protect your trunk and
provide stability to your environment.

When setting up your Git repository policies, use GitHub’s branch protection rules [4.7]
(or the equivalent from other Git providers). Setting branch protection rules pro-
vides several benefits, the most important of which is preventing someone from force
pushing a change into the trunk (which in turn makes an immediate alteration to your
environment). Branch protection also protects the branch from being accidentally or
intentionally deleted. There are other advantages to protected branches, but the main
takeaway is this: You need to trust what is in Git because it is in charge of managing
your environment. Take every precaution that builds trust.

Also, set up rules as to who can perform a merge and when. Make sure that all affected
parties in your organization see a proposed merge. For example, perhaps a network
change should be approved not only by the system administration team but also by
the networking team and the security team. A rule can take the form of a “minimum
number of approvals,” but that doesn’t limit the number of approvals to the minimum.
And while you’ll have multiple approvers, you should allow only a handful of people to
actually merge the change.

Summary
In this chapter, we explored how Git workflows differ from traditional version control
uses. I went over separating your application code from its GitOps configuration man-
ifests. I also touched on how you shouldn’t use branches for different environments,
which might seem counterintuitive to many but is essential to GitOps. I also discussed
trunk-based development and what to look for when setting up your Git policies and
PR merging workflows.

The next chapter takes the ideas laid out here and shows how to apply them to your
repositories. Specifically, I will go over the layout of your GitOps directories and some
things to keep in mind when creating your GitOps directory structure in your Git
repository.

References
[4.1]	 https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

[4.2]	 https://git-scm.com/docs/git-cherry-pick

[4.3]	 https://git-scm.com/docs/git-diff

[4.4]	 https://kustomize.io

[4.5]	 https://helm.sh

[4.6]	 https://trunkbaseddevelopment.com/

[4.7]	� https://docs.github.com/en/repositories/configuring-branches-and-merges-in-
your-repository/defining-the-mergeability-of-pull-requests/about-protected-
branches#about-branch-protection-rules

The Path to GitOps | 25

Chapter 5

Repository and Directory
Structures

When adopting GitOps, organizations must plan carefully to divide tasks and config-
uration files appropriately between repositories and directories in each repository.
Standard practices have long existed for using Git-based workflows for infrastructure
and software delivery. But with the dawn of cloud-native architectures and Kubernetes,
you can now automate a wide range of deployments based on declarations stored in a
Git repository.

The question of best practices comes up a lot when creating repositories for GitOps.
There is no magic bullet, but several common patterns exist to match the various ways
the organization interacts internally.

The overarching consideration when choosing a GitOps directory structure seems to
fall under Conway’s Law, which states:

	 �Any organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization’s communication structure.

	 — Melvin E. Conway

Applying Conway’s law to GitOps, we can expect each team of developers to create its
own branches and directories within a repository. Furthermore, the structure will be dic-
tated by organizational boundaries (which can also be called “points of demarcation”),
such as security, operations, regulatory concerns, etc.

In this chapter, we will discuss some best practices when structuring Git reposito-
ries and how you might arrange them based on experiences from different types of
organizations.

One final note before diving in: These examples are designed to be a starting point, not
a reflection of how your final repository will be represented.

Best Practices
The following are general best practices when it comes to structuring your Git reposi-
tories for GitOps. They are designed to be generic to all GitOps implementations and
are not tied to a particular toolset or technology.

DRY

The acronym “DRY” stands for “Don’t Repeat Yourself.” We can adapt it to a GitOps
model by rewording it as “Don’t Repeat YAML.” The idea is simple here; as de-
scribed in the Templating chapter, storing everything in Git can sometimes lead to
copying the same YAML over and over again in different places. Use the strategies
described in that chapter to avoid duplication of YAML. Specifically, use Kustomize
to keep the base configuration of your deployment and then store the deltas as
patched overlays.

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 26

Parameterize Where You Need To

There are certain situations where patching isn’t the best solution. Patching existing
YAML is great when you already know the configurations and deltas beforehand. An
example of this is the Ingress Object in Kubernetes [5.1]. This configuration has a host
field in the YAML manifest that is supposed to be filled in with the fully qualified domain
name (FQDN) of the application being deployed. When you are deploying onto many
clusters, the FQDNs of each one may not be known beforehand. Parameterizing your
configurations makes sense in this scenario. This is where Helm shines, specifically
when you use the lookup feature [5.2].

In the end, you will use a combination of tools to get your desired results, as I explained
in the Templating chapter. Keep in mind that there is no “absolutely right” method to do
things, and a lot will depend on your environment and communication structure. The
main point of this is not to copy the same YAML everywhere.

Repository Considerations
Before we go deeper into how your directory can be structured, there’s another im-
portant consideration to keep in mind: How many repositories are you going to have?

As mentioned previously, this really all depends on how your enterprise is structured
and where the boundaries lie. Also, the GitOps tool being used might have some limita-
tions on handling repository structures that require other considerations that are out of
scope for this discussion. But taking a high-level look at things, two patterns arise when
considering the structure of repositories: monorepo and polyrepo.

Monorepo

In a monorepo environment, all the manifests for the entire environment, including
end-user applications, cluster configuration, and cluster bootstrapping, are stored in a
single Git repository. This pattern applies not just to one cluster: every potential cluster
in your environment is represented in this single repository. Yes, dev and production
would live in the same repo. Figure 5-1 shows the monorepo solution.

Figure 5-1: GitOps with a monorepo.

The clear advantage of a monorepo is that it provides a central location for configura-
tion changes. This simplicity enables straightforward Git workflows that will be centrally
visible to the entire organization, making for a smoother and clearer approval process
and merging.

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 27

There are several disadvantages, however. The first is scalability. As your organization
grows, your environment also needs to grow with it, increasing the overall complexity of
each deployment. This can make a monorepo difficult (even impossible) to manage.

There are also performance issues, especially if you use Argo CD [5.3]. As the mon-
orepo grows and changes become more and more frequent, the GitOps controller
(for example, Argo CD) takes considerably more time to fetch the changes from the
Git repository. This can slow down the reconciliation process and might slow down the
correction of deviations from your desired state.

In short, although a monorepo is a valid choice, it can be quickly outgrown by the
evolving requirements of the organization’s operational needs. It can work if the team
managing the environment is small enough and the repository manages only a handful
of applications, environments, and clusters. Usually, startups and organizations just
starting out with GitOps prefer this approach, which is perfectly valid. Another possible
use case is when operating in a lab or another environment with a very limited domain
for action.

Polyrepo

A polyrepo environment contains multiple repositories, possibly to support many
clusters or deployment environments. The basic idea is that a single cluster can have
multiple repositories configured as a source of truth. Figure 5-2 illustrates how multiple
repositories can manage a single cluster.

Figure 5-2: The polyrepo environment.

The differences between these Git repositories depend on several factors. A common
example is separating concerns between different departments of an organization: a
repository for the security team, a repository for the operations team, and one or more
repositories for application teams. Another example involves multitenancy, where you
have one repository per application.

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 28

You could run multiple GitOps controllers within a single cluster, or a GitOps controller
can operate in a hub-and-spoke model, as shown in Figure 5-3.

Figure 5-3: The hub-and-spoke model.

A polyrepo, therefore, permits many possible designs.

The primary characteristic of a polyrepo is that not everything is contained within a sin-
gle repository and that you’ll have a sort of catalog of what needs to go into an environ-
ment or cluster. The contents of these repositories are the topic of the next section.

One common polyrepo design is many-to-many, meaning that each repository points
to a single cluster. This is a typical structure in a siloed organization where each team
takes care of deploying its own infrastructure.

Figure 5-4: The many-to-many model.

The drawback of a polyrepo is that it creates a large number of Git repositories to
manage. The number of Git repositories depends on how your organization is laid out
and how changes are managed. It’s not unheard of for each repository to have its own

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 29

associated Git workflow. This method can become hard to manage, but it scales incred-
ibly well and is flexible enough to fit almost any organization.

Directory Structures
As explained in the previous section, your Git repository structure will depend heavily
on how your organization is laid out. The repositories reflect how your organization
communicates with each other and how your current deployment workflow is repre-
sented. The different organizations with different workflows are often referred to as
silos, but more accurately, they are boundaries. For example, developers won’t modify
platform configurations, whereas operators who work on platform configurations won’t
go in to change developers’ code.

Within each repository, there are many different ways to organize directories. In this
section, we’ll focus on two use cases, showing both a monorepo and a polyrepo im-
plementation. The polyrepo example shows how organizational boundaries influence
the repositories. The monorepo example shows what a repository might look like for a
specific cluster.

Repositories Reflecting an Organizational Boundary

This example presents a simple use case with a single organizational boundary between
the Kubernetes platform administrator and the Kubernetes application developer. This
division between administrators and developers is standard.

Kubernetes Platform Administrator

The repository for the Kubernetes administrator is typically focused on getting the
Kubernetes cluster bootstrapped (installed) and configured with the necessary com-
ponents to run applications. The following is a sample of what the directory structure
might look like:

├── bootstrap
│ ├── base
│ └── overlays
│ └── default
├── cluster-config
│ ├── gitops-controller
│ ├── identity-provider
│ └── image-scanner
└── components
 ├── applicationsets
 ├── applications
 └── argocdproj

Here is a short explanation of the directories and files in this repository:

• �bootstrap: This stores bootstrapping configurations. These are items that get
the cluster configured with the GitOps controller. The base directory contains
YAML installation configuration, while overlays contain GitOps controller config-
urations. There is only one overlay, here called default, because this is the only
overlay in our simple example.

Note: The name of the direc-
tories are not important; you
can change them to suit your
needs/preferences. What’s
important is the layout and
what the directories repre-
sent. The resources listed
at the end of this chapter
explain how to use other
controllers, such as Flux,
instead of Argo CD.

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 30

The default directory contains a kustomization.yaml file that has components/​
applicationsets/ and components/argocdproj/ as a part of its bases config-
uration. It will look something like the following:

 apiVersion: kustomize.config.k8s.io/v1beta1
 kind: Kustomization
 bases:

 - ../../base

 - ../../../components/applicationsets

 - ../../../components/argocdproj

• �cluster-config: This is where YAML for the cluster’s configuration manifestlives.
The manifest determines the behavior of the cluster.

The files under gitops-controller use Argo CD to manage themselves.
The kustomization.yaml file refers to bootstrap/overlays/default in
its bases configuration. This directory gets deployed as an ApplicationSet in
components/​applicationsets/cluster-config-appset.yaml.

• ��components: This configures the GitOps controller (in this case, Argo CD).
applicationsets contains YAML for the ApplicationSets and argocdproj
contains YAML for the Argo AppProject.

The Application configured in the components directory can point to other Git reposi-
tories. The administrator uses the directory as a “point of entry” to onboard applications.

An administrator bootstraps a cluster by running:

$ kubectl apply -k bootstrap/overlays/default

This command loads in all the configurations and deploys the cluster-specific
configurations onto the Kubernetes cluster.

Kubernetes Application Developer

The repository for the Kubernetes application developer is actually pretty straightfor-
ward. It’s one of the last components that lands on a cluster, so it lets you be very terse
and make assumptions about what previous configurations have already done. Most of
the groundwork has already been implemented on the clusters by other personas. A
typical directory structure is:

└── deploy
 ├── base
 └── overlays
 ├── dev
 ├── prod
 └── stage

The bulk of the configuration is in the base directory, and only the deltas are stored in
overlays. This example shows environments such as dev and prod, but can also be
other configurations (such as clusters). This layout does make a lot of assumptions,
but the idea is that the cluster will already come configured.

The YAML files stored in this layout won’t state a namespace in their metadata
sections. This is because the creation and management of namespaces are typically
controlled by the Kubernetes administrator. This may change from organization to
organization, so it is not a hard and fast rule, but it’s something to keep in mind and
communicate about.

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 31

Although the GitOps tool deploys the application, an example deployment into the
dev environment would look like this:

$ kubectl apply -k deploy/overlays/dev

The dev overlay consumes all the YAML in base and overlay the deltas. Since most
GitOps tools support Kustomize, the combination allows a flexible deployment. For
example, if one cluster is administered through Flux and another through Argo CD,
this structure would work for both clusters.

Other Boundaries

The previous section showed a simple use case to illustrate how the division of
responsibilities can dictate the contents and structure of the repositories. Best
practices are similar when an organization has more than just two boundaries. Other
common roles that define boundaries are Kubernetes service SRE, Kubernetes
security team, and application release manager.

GitOps Repo Example

This example shows how a repository can be laid out using the DRY principle and keep
the structure generic enough to deploy to many clusters. This example also assumes
“full DevOps,” where the entire organization (both Kubernetes administrators and
Kubernetes developers) is taking part, working together in the release process.

This example, like the previous one, is based on using Argo CD as the GitOps controller:

├── bootstrap
│ ├── base
│ └── overlays
│ └── default
├── components
│ ├── applicationsets
│ └── argocdproj
├── core
│ ├── gitops-controller
│ └── sample-admin-workload
└── apps
 ├── bgd-blue
 │ ├── base
 │ └── overlays
 │ ├── dev
 │ ├── prod
 │ └── stage
 └── myapp
 ├── base
 	 └── overlays
 	 ├── dev
 	 ├── prod
 	 └── stage

The basic components of the structure are:

• �bootstrap: This plays the same role as the bootstrap directory in the previous
example.

• �components: This plays the same role as the components directory in the previous
example. Manifests that can live here include role-based access control (RBAC), Git

Chapter 5 – Repository and Directory Structures

The Path to GitOps | 32

repository secrets, and configuration files specific to the Git controller, Argo CD.
Each configuration has its own directory.

• �core: This contains YAML for the core functionality of the cluster. The Kubernetes
administrator places resources here that are necessary for the functionality of the
cluster, such as cluster configurations and cluster workloads.

The files under gitops-controller use Argo CD to manage themselves. The
kustomization.yaml file refers to bootstrap/overlays/default in its bases
configuration. This directory gets deployed as an ApplicationSet in components/
applicationsets/core-components-appset.yaml.
To add a new “core functionality” workload, the administrator adds a directory with
YAML content in the core directory.

• �apps: This is where the workloads for this cluster live. Similar to core, this directory
gets loaded as part of an ApplicationSet under components/applicationsets/
tenants-appset.yaml.

The apps directory is where developers and release engineers work. They just
need to commit a directory with some YAML, and the ApplicationSet takes care
of creating the workload.

The bgd-blue/kustomization.yaml file can point to another Git repository.
Thus Kustomize helps you your YAML in many reposistories, if this is convenient.
The bgd-blue directory can also be a Git submodule.

Conclusion
In this chapter, we discussed best practices for creating GitOps repository and directo-
ry structures. Although there are generic examples that you can follow, there is no one
answer. Your directory structure is going to be driven by your organizational structure
and possibly regulatory considerations as well. However, following these basic best
practices can help lead you in the right direction.

To get you started working with GitOps directory structures, I provide several starting
points in the following repositories:

• �Using Argo CD on Kubernetes [5.4]

• �Using Flux on Kubernetes [5.5]

• �Using OpenShift GitOps on OpenShift [5.6]

References
[5.1]	 https://kubernetes.io/docs/concepts/services-networking/ingress/

[5.2]	 https://helm.sh/docs/chart_template_guide/functions_and_pipelines/

[5.3]	� https://argo-cd.readthedocs.io/en/stable/operator-manual/high_
availability/#monorepo-scaling-considerations

[5.4]	 https://github.com/christianh814/example-kubernetes-go-repo

[5.5]	 https://github.com/christianh814/example-kubernetes-goflux-repo

[5.6]	 https://github.com/christianh814/example-openshift-go-repo

The Path to GitOps | 33

Chapter 6

CI/CD with GitOps

CI/CD (continuous integration/continuous delivery) has become the workbench for
DevOps practitioners. In Chapter 1, we briefly went over what CI/CD means and where
GitOps fits into your CI/CD workflows. In this chapter, we will dive deeper into where
GitOps fits in your CI/CD pipelines, explore the various ways you can implement it, and
go over the pros and cons of each method. Along with directory structures, CI/CD with
GitOps is one of the topics people ask about most when discussing GitOps workflows.

CI and CD Can Be Decoupled
When looking at how GitOps approaches CI/CD, you first have to understand that
continuous integration and continuous deployment aren’t necessarily tied as closely
together as developers traditionally thought.

People typically glom CI and CD together, because popular DevOps tools like Jenkins aim
to do both. Jenkins has successfully created a platform to manage both CI and CD using
a single management system. But with the advent of Kubernetes, microservices, and
cloud-native architecture, many paradigms are starting to be decoupled, including CI/CD.

Integrating Synchronous and Asynchronous Tools

CI is primarily a synchronous process that has a start and an end, and that is usually trig-
gered by some event. For example, a commit to a specific repository or branch can trig-
ger a pipeline that builds the application, runs tests against it, and maybe triggers other
pipelines. The key point here is that the process is synchronous, and there are typically
dependencies between each step.

GitOps, conversely, is asynchronous. As discussed in Chapter 1, the fourth GitOps
principle states that software agents continuously observe the actual system state and
attempt to apply the desired state. Simply put, the GitOps controller has no idea what
is taking place in the CI system. The GitOps controller only looks at the Git repository
(which represents the desired state) and acts only if the desired state has mutated.

Integrating synchronous tools with asynchronous tools can be challenging, especially
when you are trying to integrate systems that have been in place for a while. In this
chapter, we’ll look at three methods for integrating GitOps with your CI/CD system.

CI Managed
In the CI-managed model, the CI tool owns and manages the complete deployment
using one system. This is close to what most people are used to; for instance, the pop-
ular Jenkins tool mentioned earlier owns the entire process. In this model, the GitOps
process is orthogonal to the CI system, and the system is usually managed using float-
ing tags (such as dev, stage, and prod). It’s the CI’s job to tag the appropriate release.
Figure 6-1 shows this mostly linear design.

Figure 6-1: The CI-managed CI/CD model.

Chapter 6 – CI/CD with GitOps

The Path to GitOps | 34

Benefits

The main benefit of this model is that it follows the traditional CI/CD design that
many organizations are already using. Matching an existing model reduces the need
to re-architect your processes, and existing systems like Jenkins can stay in place
without much modification. Many organizations start with this model when they are
early in their exploration of GitOps and its practices. This model is also where people
start when they have existing pipelines that they simply want to reuse.

Drawbacks

The main drawback is that the model goes against the spirit of GitOps, philosophi-
cally. If the idea is to use Git as the source of truth, CI-managed CI/CD undermines
that goal through its dependence on floating tags. With floating tags, someone
can forcibly push an update to the tag and change the system’s state without the
GitOps controller knowing about it because the Git repository simply trusts what
the tag says. For example, if someone tags an image as prod and pushes it to the
registry without passing the image through the proper CI process, the GitOps con-
troller will deploy that image in its prod deployments, with all the risks of evading
the CI build process.

CI Owned and CD via GitOps
In this model, the CI platform owns the process of building, managing, and deploying
new versions of an application but uses the GitOps controller for the actual deploy-
ment. Once the GitOps controller deploys the new version of the application, it hands
the process back to the CI platform that actually validates and tests the update. In this
model, the CI process is more hands-on with the GitOps controller, and integrations will
need to be written if plug-ins are not already available.

For example, the CI process builds an image and pushes it to a registry, after which
the CI system changes the appropriate tag in Git to trigger deployment from the
GitOps controller. The CI system also monitors the deployment and verifies it once
it has rolled out. In this way, the whole process can be thought of as synchronous
(Figure 6-2).

Figure 6-2: The CI-owned and GitOps-deployed model.

Benefits

The advantage of the CI-owned and GitOps-deployed method is that it tries to comply
with the GitOps principle that the state stored in Git is the state that ends up being
deployed to the cluster. This way, you know exactly what gets deployed and what is
running in your cluster. Another advantage is that the method keeps the linear aspect
of a pipeline intact. This simplicity makes things easier to follow, and easier to trouble-
shoot when something goes wrong.

Chapter 6 – CI/CD with GitOps

The Path to GitOps | 35

Drawbacks

The drawback to this model is that integrating the pipeline with the GitOps con-
troller adds a layer of complexity. You are mixing the synchronous CI actions with
asynchronous Git-based processes. This combination can be challenging and, in
many cases, will require refactoring a lot of things in your pipeline.

This design makes the most sense when there is no gating between the environments
(like dev ~> test). This is getting closer to fully automating the process.

CI Triggered and GitOps Owned
With the CI triggered and GitOps owned method, the CI platform that builds the ap-
plication relies on the GitOps controller to handle the deployment in an asynchronous
fashion. This is done mainly by having the CI process create a GitHub pull request (PR)
against the tracked branch for each stage of the pipeline.

There are other ways to implement this model, too. In “fire-and-forget,” the CI tool
commits changes to the tracked repository automatically (i.e., without gating by
issuing a PR). Once the GitOps controller completes the deployment, a postsync
hook can trigger additional pipelines to perform any post-deployment tasks. The
model is illustrated in Figure 6-3.

Figure 6-3: The CI-triggered and GitOps-owned method.

Benefits

The major benefit of this design is that the CI process, which is synchronous, is decou-
pled from the asynchronous GitOps controller. This lets you avoid the challenges you
face when trying to integrate the two. The model lets each system do what it does best
(aka “the best tool for the job”).

Drawbacks

The drawback to this approach is that the pipeline ceases to be a simple linear process.
The loosely coupled processes can make it difficult to troubleshoot and keep track of
where a build is in its process.

Also, a sync process can be triggered frequently for other reasons (like a self-heal when
a resource is missing), so you need to code the pipelines to account for this.

A Mindset Shift

Using GitOps with CI/CD calls for a shift in thinking. Traditionally, you think of
promoting code or images into environments. But GitOps with CI/CD changes that
mindset. When working with GitOps workflows, it’s not code but manifests that get
promoted and tested across your environments. A code update triggers an image

Chapter 6 – CI/CD with GitOps

The Path to GitOps | 36

build, which ends up getting updated in the manifest. Any other change in the manifests
should follow the same promotion process as an image update.

So when you’re thinking about promoting your application from environment to envi-
ronment, think about it instead as promoting manifests. Because Kubernetes relies on
immutable containers, the code isn’t what really gets promoted; rather, it’s the desired
state of the application running on the cluster. This is a subtle change in mindset, but an
important one.

Conclusion
In this chapter, we explored a few different ways you could integrate your CI system
with the GitOps paradigm of doing CD. We went over how you can plug your GitOps
controller into your existing CI/CD system, how to take a synchronous CI system and tie
it into your asynchronous GitOps deployment system, and finally, how to run a decou-
pled CI and CD system using GitOps.

In the next chapter, we will dive into a vital security-related topic that, like CI/CD in-
tegration, challenges some basic GitOps precepts: how to manage secrets in a Gi-
tOps-friendly way.

The Path to GitOps | 37

Chapter 7

Handling Secrets

Along with Git directory structures and CI/CD, another big question people raise about
GitOps is what to do with Kubernetes secrets. The GitOps principles state that a sys-
tem’s state is stored declaratively, and this rule also applies to Secrets.

This requirement poses a challenge for both development teams, which store appli-
cation configurations, and system operations teams, which store infrastructure con-
figurations. Applications use sensitive data, notably the token or credentials that
grant access to a database. For operations, the critical secret could be information
about accessing other resources in the environment or other tokens or credentials.
Storing such sensitive information in a Git repository—even a private one behind a
firewall—poses a security threat. Git secrets shouldn’t be stored in clear text, even
in a private, hosted repository.

In this chapter, I will go over how to securely handle secrets and comply with the
GitOps principles.

Common Patterns
Storing secrets securely in a version control system isn’t a new problem; it existed with
all of the Infrastructure as Code tools in the past and was later inherited by Kubernetes.
Two common methods have emerged to use Kubernetes secrets securely in GitOps
workflows:

• �Storing encrypted secrets in Git.

• �Storing secrets in external services and storing references to the secrets in Git.

The rest of this chapter looks at each of these patterns in detail.

Storing Encrypted Secrets
Storing encrypted secrets is one of the most popular ways to avoid exposing sensitive
data. This solution involves encrypting the secret before uploading it into Git. Later,
when the secret is applied, the user process decrypts it. The secret is never stored
anywhere in plaintext.

There are a few popular technologies for encrypting secrets. In this chapter, we will
focus on the most popular one: Sealed Secrets for Kubernetes [7.1] by Binami.

Sealed Secrets

Sealed Secrets is a system that runs in your Kubernetes cluster to encrypt and
decrypt secrets using asymmetric cryptography (also known as public-key
cryptography). Sealed Secrets has become very popular, especially among
GitOps practitioners, because of its ease of use and low barrier to entry. Thanks
to its not-so-steep learning curve, it has been widely adopted by Kubernetes
administrators.

Sealed Secrets has two primary components. The first is a controller that runs inside of
Kubernetes to manage the public and private keys. This controller is also responsible

Chapter 7 – Handling Secrets

The Path to GitOps | 38

for decrypting the encrypted secrets. The second component is a command-line inter-
face (CLI) client called kubeseal, used by end users to encrypt secrets.

The Sealed Secrets controller watches for the existence of a SealedSecret resource
when it gets applied to the Kubernetes cluster. The controller then decrypts the data
and loads the corresponding secret into the Kubernetes cluster. The process is illustrat-
ed in Figure 7-1.

Figure 7-1: The Sealed Secrets controller in action.

The controller uses a random cryptographic nonce when encryption is done, further
hardening the system.

kubeseal is the CLI tool used by an end user to interact with the Sealed Secret con-
troller. The user runs kubeseal to encrypt a secret before it is added to the Git repos-
itory. The nice thing about this system is that the end user doesn’t have to possess or
know the public key because the CLI tool connects to the Sealed Secret controller to
do the encryption. (Figure 7-2).

Figure 7-2: The kubeseal workflow.

Chapter 7 – Handling Secrets

The Path to GitOps | 39

You can also provide a public key in the CLI for “offline” encryption, where you don’t use
the Kubernetes cluster. This alternative is useful for automation.

Sealed Secrets supports automatic rotation of the encryption keys and, optionally,
deprecation of past keys.

Challenges of Storing Encrypted Secrets

Storing encrypted secrets in Git presents a few challenges. The first is that someone
or something needs to generate the encrypted secret beforehand. Because the secret
has to exist before encrypting it, there is a danger that whoever generates it will mistak-
enly commit the plaintext secret into Git.

There is also the private key or “key 0” problem, which refers to the private key that is
stored on the system. If you’re managing many clusters, managing the storage process
at scale can become an issue. This private key needs to be installed on every Sealed
Secret controller. Furthermore, if that key is rotated or expired, you need to make sure
that every cluster gets the new key in order to work. The number of updates required
for each change can lead to a lot of overhead in managing the Sealed Secret control-
lers in your environment. Also, the private key is stored in etcd, which creates another
attack vector.

Still, storing encrypted secrets is a valid way to solve security problems, and I’ve seen it
used successfully in many environments.

Storing Secret References
In this methodology, secrets are not stored in Git (neither in plaintext nor in an encrypt-
ed format) but rather in a secret management system. Only a reference to the secret
is stored in Git. You can safely store this reference because the reference contains no
sensitive information. When the secret is needed to perform operations, a controller
“fetches” the actual secret and applies it to the cluster.

Many tools provide this function, and in the next section, I will focus on one that hopes
to broker all solutions: External Secrets [7.2].

External Secrets

External Secrets is a Kubernetes controller that integrates external secret management
systems such as AWS Secrets Manager [7.3], HashiCorp Vault [7.4], Google Secrets
Manager [7.5], and Azure Key Vault [7.6] using a plug-in model. The External Secrets
controller reads information from external APIs (for example, HashiCorp Vault) and
injects the values from the external system into Kubernetes as a secret.

This process works by providing the controller with an ExternalSecret object.
This object has a secretStoreRef field where a user defines a SecretStore,
which has information about how to fetch the required secret. ExternalSecrets
resources, as I mentioned before, can be stored in Git, as they don’t have any sen-
sitive information. ExternalSecrets itself does not perform any cryptographic
operations and instead fully relies on the backends. The general process is shown
in Figure 7-3.

Chapter 7 – Handling Secrets

The Path to GitOps | 40

Figure 7-3: External Secrets operation.

The external secrets controller is also multitenant, so secrets cannot be read across
namespaces. There’s even a namespaced scoped mode where you can have an
External Secrets controller in each namespace that needs it.

External Secrets is popular because it abstracts the backend secret management sys-
tem so users can use the same essential procedure independent of the secret provider.
Furthermore, External Secrets is useful for sites with many different secret sources.

Challenges of Storing Secret References

The first issue that comes to mind with respect to secret references is that the secret
is actually managed outside the scope of GitOps. This can be problematic because the
second GitOps principle states that the resource should be versioned. Since you are
only referencing the secret in Git, you are not really keeping track of what version of
that secret you are using. Another challenge is that the management of the secret is
done outside of the Kubernetes platform itself. This separation might require another
team to manage the life cycle of that secret.

That being said, storing secret references is a good solution, especially if you don’t
want to get the end user involved in managing the life cycle of the secret.

Conclusion
In this chapter, we examined two different methods of managing secrets using GitOps.
The first approach is to store an encrypted version of the secret in your Git repository.
The second method is storing a reference of the secret in Git while another platform
manages that secret. Both solutions are quite popular, and what works for you depends
on the security practices in your specific environment.

References
[7.1]	 https://github.com/bitnami-labs/sealed-secrets

[7.2]	 https://github.com/external-secrets/external-secrets

[7.3]	 https://aws.amazon.com/secrets-manager/

[7.4]	 https://www.vaultproject.io/

[7.5]	 https://cloud.google.com/secret-manager

[7.6]	 https://azure.microsoft.com/en-us/services/key-vault/

The Path to GitOps | 41

Chapter 8

Other Considerations

In this book, I have taken you on a step-by-step journey toward building GitOps
pipelines, focusing on environments running containers on a Kubernetes cloud-native
infrastructure. These are the environments that produced GitOps (see Chapter 1, What
Is GitOps?). And this history is the main reason why, when you search for GitOps, you
will find a lot of information about Kubernetes, Kubernetes-native tools, and how to
integrate them with your GitOps practices.

However, other considerations exist when adopting GitOps and integrating it
with your current environment. We’ll cover them in this chapter. Some of these
considerations reach into other aspects of your infrastructure that might not be
GitOps-ready. Luckily, many of these GitOps paradigms have been around a while,
so you’ll find a lot of integration points that fit naturally with your environment.
This chapter introduces open source tools and Red Hat services to help achieve
advanced goals.

Multicluster Management
GitOps has its foundations in Kubernetes, and increasing Kubernetes adoption across
the industry will lead more and more sites to run multiple Kubernetes clusters. These
clusters could be in a single datacenter on-premises, across multiple regions on a
hyperscale, or in a hybrid cloud that combines the two types of locations. Reasons for
running multiple clusters include multitenancy, disaster recovery, and isolation for the
sake of security. Regardless of the reason, we now need to manage the life cycle of
these Kubernetes clusters from creation to retirement.

Red Hat Advanced Cluster Management for Kubernetes [8.1], based on the open
source CNCF sandbox project Open Cluster Management [8.2], was built for this
exact use case. With Red Hat Advanced Cluster Management for Kubernetes, users
can install OpenShift clusters, manage policies, and manage the entire life cycle
of their clusters from a single pane of glass. You can manage these clusters via
declarations read from a Git repository, and the platform has native integration
with Argo CD for Application deployments across all clusters. Furthermore, you
can add and manage other *KS clusters from various hyperscalers: Amazon Elastic
Kubernetes Service (EKS), Azure Kubernetes Service (AKS), Google Kubernetes
Engine (GKE), etc.).

By combining Red Hat Advanced Cluster Management for Kubernetes with your
GitOps workflows, you can manage the complete application life cycle, including the
underlying infrastructure.

Non-Declarative Infrastructure
Even with the mass adoption of containers, we will still be living in a world of virtual ma-
chines for the foreseeable future, and even more so with bare metal servers. Therefore,
although Kubernetes and cloud-native infrastructure strongly emphasize declarative
configuration, you will still find yourself integrating and managing many components
that are non-declarative.

Red Hat Ansible Automation Platform [8.3] provides a framework for building out
your enterprise automation at scale. With Red Hat Ansible Automation Platform,

Chapter 8 – Other Considerations

The Path to GitOps | 42

users can integrate existing Ansible automation playbooks into their GitOps work-
flows in various ways, using tools such as the Ansible Operator SDK, Ansible Tower,
and Ansible Runner integration points. I think it makes the most sense to integrate
components using the native integration with Red Hat Advanced Cluster Manage-
ment for Kubernetes [8.4]. The built-in native integration gives you a central way to
manage your cloud-native infrastructure alongside your traditional, non-declarative
infrastructure.

By using Red Hat Ansible Automation Platform in your GitOps workflows, you pull your
traditional infrastructure and applications into the purview of your GitOps workflows.
This lets you take advantage of the power of Git-based workflows on your Kubernetes
cloud-native infrastructure.

Security
Security is a broad and complicated topic to discuss holistically. Within the context of
GitOps, the conversation has more to do with container and Kubernetes security prac-
tices. Red Hat Advanced Cluster Security for Kubernetes, based on the open source
project StackRox [8.5], is another great integration point with your GitOps workflows.
Red Hat Advanced Cluster Security for Kubernetes [8.6] provides toolsets to address
the security needs of running infrastructure on Kubernetes.

Red Hat Advanced Cluster Security for Kubernetes offers visibility into the security
of your cluster, vulnerability management, and security compliance through auditing,
network segmentation awareness and configuration, security risk profiling, security-re-
lated configuration management, threat detection, and incident response. The service
can be configured to identify vulnerabilities in your containerized workloads so you
have visibility into what is going into your clusters.

Red Hat Advanced Cluster Security for Kubernetes has many integration points, but
I see it as living in the CI/CD process. Scanning images before they are deployed can
help mitigate security breaches before they happen. Also, continuously scanning imag-
es in your environment alerts you to vulnerabilities faster so you can take action sooner.

Integrating Red Hat Advanced Cluster Security for Kubernetes into your CI/CD process
brings in security earlier in the process. This methodology is known as DevSecOps [8.7].

Base Image Selection

Base image selection is an important factor in security. It’s a lot easier to manage
updates to applications when they are all built using the same base image. Unifying the
containers on one base image lets your organization build a “golden image” undergird-
ing all of its applications. The image not only has the needed toolsets for every appli-
cation but includes all required security patches. When you update your base image,
every application built from that moment on will have all the necessary security patch-
es. You can take advantage of this efficient security practice by using Red Hat Universal
Base Image [8.8].

Whether or not you’re a Red Hat customer, Red Hat Universal Base Image (UBI)
gives you greater reliability, security, and performance afforded by official Red Hat
container images running OCI-compliant Linux containers. You can take the same
bits that are used to build Red Hat Enterprise Linux and use them in your contain-
erized applications. You can build a containerized application on UBI, push it to your
chosen container registry server, and share it. The Red Hat Universal Base Image al-
lows you to build, share, and collaborate on your containerized application wherever

Chapter 8 – Other Considerations

The Path to GitOps | 43

you want at no cost, including OpenShift Kubernetes, *KS Kubernetes, and Docker
Compose environments.

Using a secure base image and building policies that ensure the use of that base
image (and keeping the base image updated) helps mitigate the risk of stray ap-
plications built without security patches. Even if one does slip through the cracks,
you can put policies in place to flag those images using Red Hat Advanced Cluster
Security for Kubernetes.

Everything as Code
Taking a step back, how do all these toolsets fit in your environment? GitOps has
evolved every aspect of “as-code” paradigms to fully embrace automation. With
these new considerations, as these technologies progress, you can now do “every-
thing-as-code.” In this context, the term means that your entire CI/CD process is
described declaratively in a Git repository (Figure 8-1).

Figure 8-1: Everything as code.

In Figure 8-1, your CI process is handled by the cloud-native CI/CD platform Tekton,
where you can set up Pipeline-as-code [8.9] to host your pipelines in Git (similar to a
GitHub action) and have Tekton read your Pipeline definitions from Git.

The StackRox platform manages your security by scanning your image repository. It
can interact with Tekton to fail promotion if there’s a vulnerability found. StackRox also
interacts with your Kubernetes cluster to continuously monitor your deployments as
they run.

Argo CD can manage your clusters in the CD layer by reading the application deploy-
ment configuration from a Git repository (this should start to sound familiar, now that
you understand how GitOps works). It keeps everything in sync as it works with the
Open Cluster Management server to create and manage your clusters at scale using
these Git repositories.

In short, you can set everything up in a declarative manner using cloud-native toolsets.
This “Everything-as-Code” configuration is the holy grail of DevOps, representing what
a lot of us DevOps practitioners have been striving for: full, declarative automation for
the entire organization.

Chapter 8 – Other Considerations

The Path to GitOps | 44

Conclusion
This chapter covered ancillary considerations to think about when integrating a GitOps
workflow into your organization. We discussed how Red Hat Advanced Cluster Manage-
ment for Kubernetes helps you create, manage, and scale Kubernetes clusters from a
single control plane. We also saw how you can incorporate security practices into your
CI/CD workflows with Red Hat Advanced Cluster Security for Kubernetes.

You can also use the Red Hat Ansible Automation Platform to integrate things that lie
outside your GitOps workflows. Finally, we took a look at how all these technologies can
be used together to provide an “Everything-as-Code” design, where you can declara-
tively manage your environments.

References
[8.1]	� https://www.redhat.com/en/technologies/management/advanced-cluster-

management

[8.2]	 https://open-cluster-management.io/

[8.3]	 https://developers.redhat.com/products/ansible/overview

[8.4]	 https://www.redhat.com/en/about/videos/acm-ansible-integration-overview

[8.5]	 https://www.stackrox.io

[8.6]	� https://www.redhat.com/en/resources/advanced-cluster-security-for-
kubernetes-datasheet

[8.7]	� https://developers.redhat.com/topics/devsecops/

[8.8]	� https://developers.redhat.com/blog/2021/04/13/how-to-pick-the-right-
container-base-image

[8.9]	� https://cloud.redhat.com/blog/create-developer-joy-with-new-pipelines-as-
code-feature-on-openshift

The Path to GitOps | 45

Christian Hernandez leads developer experience at Codefresh. He previously
spent eight years on the customer and field engagement team in Red Hat’s Hybrid
Platforms organization and hosted the biweekly GitOps Guide to the Galaxy [1]. A
contributor to Argo CD and OpenGitOps, Christian is a technologist with experience
in infrastructure engineering, systems administration, enterprise architecture, tech
support, advocacy, and management. Lately, he has been focusing on Kubernetes,
DevOps, cloud-native architecture, and GitOps practices. Christian is passionate
about open source and containerizing the world one application at a time.

Reference
[1]	 https://www.youtube.com/playlist?list=PLaR6Rq6Z4IqfGCkI28cUMbNhPhsnj4nq3

About the Author

	001-007
	008-013_Ch1
	014-017_Ch2
	018-021_Ch3
	022-024_Ch4
	025-032_Ch5
	033-036_Ch6
	037-040_Ch7
	041-044_Ch8
	045-045_Author

