B @

Load Balancing
trategies
o
o

BB
O 00 @

S | LAHIRU
.| LIYANAPATHIRANA

Page 2 of 27

Introduction

In modern applications, reliability, high availability,
performance, and scalability are essential.

That's where load balancing plays a key role.

Load balancing is a fundamental technique in
computing and networking that distributes incoming
trattic across multiple servers or resources.

lts primary goals are to optimize resource utilization,

ensure uptime, enhance system performance, and
prevent server overloads or bottlenecks.

@
—+
OO0
i H\YHAIII}RPATMRANA

Page 3 of 27

Key Benefits of Load Balancing

Modern applications serve millions ot users concurrently.
A robust load-balancing layer is essential for ensuring
high availability, tault tolerance, and consistent
performance.

e High Availability: Maintains system uptime by
distributing tratftic across multiple servers.

e Fault Tolerance: Automatically detects server
tailures and reroutes tratfic to healthy servers.

e Scalability: Supports horizontal scaling by adding
more servers to handle growing tratftic loads.

e Performance: Enhances response times and overall
user experience.

e Security: Helps mitigate DDoS attacks and shields
backend systems from direct exposure.

LAHIRU .9
L LIvANAPATHIRANA -

Page 4 of 27

Load Balancing Strategies

The following are common load-balancing strategies:

L

e Round Robin

e Weighted Round Robin

Least Connections

Weighted Least Connections

IP Hash

Least Response Time

Resource-Based

Random

LAHIRU
LIYANAPATHIRANA

@
—
OO0 0

Page 5 of 27

Round Robin

The Round Robin is one of the simplest and most widely
adopted load-balancing algorithms.

It is a static load-balancing strategy that distributes
client requests sequentially across a pool of servers in a
cyclic manner.

This method treats all servers as equal and each server

receives an equal share of requests regardless ot their
current load or capacity.

Server 01

User O1

E Server 02

E Load Balancer

Server 03

i N
e e [P W

User 02
Round Robin

LAHIRU —
L LIYANAPATHIRANA -

Page 6 of 27

Round Robin

Use Cases

Homogeneous server environments:
Ideal for clusters with identical server specs (e.g., CPU,

RAM).

Basic deployments:
Suitable for static content delivery or stateless
applications that don't require complex configuration.

Evenly distributed, predictable workloads:
Ideal for systems with consistent request patterns, such

as basic web servers handling HTTP traftic.

Testing environments:
Appropriate where even distribution is sufficient.

LAHIRU .}
L LIvANAPATHIRANA -

Page 7 of 27

Round Robin

Limitations

Ignores server capacity:
Treats all servers equally, which can lead to uneven
loads it servers have ditfferent processing capabilities.

Predictability issues:
The tixed sequence may pose security risks in scenarios
where unpredictability is preferred.

Inefficiency with uneven loads:
Struggles with workloads where request processing
times vary signiticantly.

No session persistence:

Clients may connect to ditterent servers in successive
requests, disrupting stateful applications.

LAHIRU .ﬁ
L LIvANAPATHIRANA -

Page 8 of 27

Weighted Round Robin

The Weighted Round Robin algorithm extends the
basic Round Robin algorithm by assigning a weight to
each server based on its capacity or performance.

Servers with higher weights receive proportionally more
requests than those with lower weights.

This addresses the limitation of standard Round Robin in
heterogeneous environments.

Server 01

User O1 —_— weight = 0.8

Server 02
E Beadi -
phimct e L
0 o

E Load Balancer

E weight = 0.1

Server 03

L ¥
T

User 02 weight = 0.1
Weighted Round Robin

LAHIRU .}
L LIvANAPATHIRANA -

Page 9 of 27

Weighted Round Robin

Use Cases

Heterogeneous environments:
Ideal for environments with varying resources and server
capabilities.

Prioritized workloads:
Directs critical tasks to higher-capacity servers.

Gradual scaling scenarios:
Useful where new instances start with lower weight and
ramp up over fime.

Limitations

Static weights:
Requires manual updates it server capacities change.

No real-time adaptation:

Does not adjust to sudden trattic spikes or server
failures.

LAHIRU .}
L LIvANAPATHIRANA -

Page 10 of 27

Least Connections

The Least Connections is a dynamic load-balancing
strategy that directs incoming requests to the server
with the tewest active connections at the time of the
request.

This approach helps distribute the load more evenly by
accounting for the current workload ot each server and
adapting to real-time tratftic conditions, making it
suitable for dynamic environments.

Server 01

User 01 10000 connections

E Server 02
‘EE Load Balancer

E 1000 connections
=

Server 03

%
]
i

| | |
T —— o e ':'I

“User 02
Least Connections

LAHIRU .}
L LIvANAPATHIRANA -

Page 11 of 27

Least Connections

Use Cases

Long-lived connections:
Ettective tor applications like databases or streaming
services where sessions vary in duration.

Dynamic environments:
Adapts well to variable trattic loads (e.g., e-commerce
during flash sales).

Mixed workload environments:
Useful where some requests are more resource-intensive
than others.

Limitations

Ignores server capacity:

Assumes all connections consume equal resources. This
may lead to an imbalance it connections have wildly
ditfering resource demands

No session affinity:
Requires additional mechanisms for sticky sessions.

LAHIRU .}
L LIvANAPATHIRANA -

Page 12 of 27

Weighted Least Connections

The Weighted Least Connections combines the
orinciples of Least Connections and Weighted Round

Robin.

It considers both the number of active connections and
the relative capacity (weight) of each server.

It distributes requests to servers with the lowest ratio of

connections to weight, allowing both current load and
server capacity to influence routing decisions.

Server 01

User 01 : 1000 connections
weight = 0.8

Server 02
E IJ':'!:ll;ﬂ_.\.,!..._:: tl.:: 'L:-..I“

E Load Balancer

E 10 connections
weight = 0.1

Server 03

U_S-T_r EE_ 1000 connections
Weighted Least Connections weight = 0.1

LAHIRU —
L LIYANAPATHIRANA -

Page 13 of 27

Weighted Least Connections

Use Cases

Heterogeneous server clusters:
Suitable for clusters with varying processing
capabilities.

Mixed workload environments:
ldeal for services with varied connection durations.

Hybrid cloud deployments:
Etfective in environments with different server types
(e.g., on-prem + cloud).

Resource-intensive applications:
Prioritizes high-capacity servers for compute-heavy
tasks.

Scalable microservices platforms:
Usetul where instance resources vary dynamically.

LAHIRU .ﬁ
L LIvANAPATHIRANA -

Page 14 of 27

Weighted Least Connections

Limitations

Overhead:
Increased computational cost for dynamic adjustments.

Static weights:
Requires manual updates it server capacities change.

Complex configuration:

Requires continuous monitoring to adjust weights.
appropriately.

LAHIRU .}
L LIvANAPATHIRANA -

Page 15 of 27

IP Hash

The IP Hash (or Source IP) load balancing assigns
requests to servers based on the client's IP address.

't uses a hash function on the client's IP address to
determine which server should receive the request.

As a result, all requests originating from the same IP

address are consistently directed to the same server.
This ensures session persistence, often referred to as
"sticky sessions.”

Server 01

User O1
hash(IP) = 01

E Server 02

E Load Balancer

E hash 02

hash(IP) = 03

I."-"_;;_-_,-.;\ -15

i v e a
_Eeq &

IR,]

L i

Server 03

i)
e A T P

User 02 hash 03
IP Hash

LAHIRU .}
L LIvANAPATHIRANA -

Page 16 of 27

IP Hash

Use Cases

Stateful applications:

Critical for banking platforms, e-commerce carts, or
real-time communication tools requiring consistent
client-server sessions.

Geolocation-based routing:
Ensures clients from specific regions connect to
designated servers.

Content Delivery Networks (CDNs):
Directs users to specitic edge servers.

Gaming servers and APl gateways:
Where consistent client-server mapping is important.

LAHIRU .}
L LIvANAPATHIRANA -

Page 17 of 27

IP Hash

Limitations

Traffic imbalance:
High-activity clients can overload specitic servers.

Uneven load distribution:

It the hash function is not well-designed, some servers
may receive more traffic than others, causing
imbalances.

Adaptability issues:
May not handle server additions or removals gracetully,
requiring rehashing and potential session disruptions.

Shared NAT problems:
Clients behind NAT may share the same IP, leading to

skewed routing.

LAHIRU .ﬁ
L LIvANAPATHIRANA -

Page 18 of 27

Least Response Time

The Least Response Time algorithm routes trattic to the
server with the lowest combination ot active connections
and response fime.

This strategy dynamically considers both the current load
(implicitly through response time) and the server's speed.
The load balancer continuously monitors the response
times of each server and routes new requests to the one
that is responding tastest.

Server 01

User 01 S response time
Keq 3
1 ms

E Server 02
=
Load Balancer
maT E

E response time
100 ms

Server 03

i)
e A T P

“User 02 response time
Least Response Time 10 ms

LAHIRU —
L LIYANAPATHIRANA -

Page 19 of 27

Least Response Time

Use Cases

Low-latency applications:
Ideal for online gaming, VolP, or high-trequency trading
platforms.

Performance-critical applications:
Where response time is vital.

Real-time analytics:
Ensures minimal delay for time-sensitive data

processing.

Interactive applications:
Where user experience depends on speed.

LAHIRU .}
L LIvANAPATHIRANA -

Page 20 of 27

Least Response Time

Limitations

Measurement overhead:

Requires constant monitoring ot server response times,
adding resource-intensive load and operational
complexity.

Geographic challenges:
Ditticult to compare latency across global servers.

Implementation complexity:
Requires sophisticated monitoring systems.

Historical bias:

Relies on past performance data, which may not reflect
current server conditions accurately.

LAHIRU .}
L LIvANAPATHIRANA -

Page 21 of 27

Resource-Based

Resource-based load balancing routes trattic based on
real-tfime analysis of each server's resource usage, such
as CPU, memory, network, or disk utilization.

The load balancer uses agents installed on each server
to collect and report these metrics and then routes new
requests to the server with the most available resources.

This approach makes routing decisions using actual
server resource availability rather than simplified proxies
ike connection count.

Server 01

User 01 CPU - 2 Core
RAM - 4GB

Server 02

E Load Balancer

E CPU - & Core
RAM - B8 GB

Server 03

L P R T ':'I

“User 02 CPU - B Core
Resource-Based 2AM - 16G8

LAHIRU —
L LIYANAPATHIRANA -

Page 22 of 27

Resource-Based

Use Cases

Resource-intensive workloads:

Suitable tfor applications requiring significant
computational resources (e.g., video encoding, data
analytics).

Auto-scaling cloud environments:
Integrates with SDN controllers for adaptive scaling.

Heterogeneous servers:
Ideal when servers have varying capacities, such as in

cloud infrastructures.

Critical systems:
Where maximizing resource utilization efticiency is key.

LAHIRU .}
L LIvANAPATHIRANA -

Page 23 of 27

Resource-Based

Limitations

Complexity:
Requires continuous monitoring of server resources,
adding operational overhead.

Latency:
Real-time monitoring may introduce delays in routing
decisions.

Data freshness:
Ensuring accurate, up-to-date resource data can be
challenging in large-scale environments.

Agent dependency:

Requires agent software on each server and secure
communication with the load balancer.

LAHIRU .}
= LIYANAPATHIRANA -

Page 24 of 27

Random

Random load balancing assigns each incoming request
to a randomly selected server from the pool.

This simple approach can be surprisingly eftective tor
evenly distributing load, especially when requests are
uniform and servers are similar.

Server 01

E Load Balancer

Rondom

LAHIRU .;
L LIvANAPATHIRANA -

Page 25 of 27

Random

Use Cases

Simple setups:
Easy to implement and suitable for small-scale
environments and early-stage setups.

High request volumes:
With large numbers of requests, randomness can
statistically balance load.

Stateless microservices:
Where session persistence is not required.

Limitations

Short-term imbalance:
Can lead to uneven distribution temporarily.

No consideration for server capacity:
Ignores differences in processing power or current load.

Not ideal for sessions:
Can disrupt session persistence.

LAHIRU .}
L LIvANAPATHIRANA -

Page 26 of 27 &

- ol=lo
Conclusion Q5T 2,

The right load-balancing strategy depends on trattic
patterns, server heterogeneity, and application
requirements.

Simply:

e Use Round Robin or Random tor simple, stateless
apps with identical servers.

e Use Weighted algorithms when server capacities

differ.

e Use Least Connections or Response Time for long-
ived sessions or latency-sensitive apps.

e Use IP Hash for session persistence in stateful apps.

e Use Resource-Based when routing should depend on
real-time CPU, memory, or bandwidth usage.

By understanding the strengths and limitations of each
strategy, system administrators can optimize application
performance, reliability, and scalability.

LAHIRU .)
= LIYANAPATHIRANA -

Did You Find This
Post Useful?

Stay Tuned for
More Posts
Like This

B LARIRU
LIYANAPATHIRANA

