
Load Balancing
Strategies

LAHIRU
LIYANAPATHIRANA



Introduction
In modern applications, reliability, high availability,
performance, and scalability are essential.

That’s where load balancing plays a key role.

Load balancing is a fundamental technique in
computing and networking that distributes incoming
traffic across multiple servers or resources.

Its primary goals are to optimize resource utilization,
ensure uptime, enhance system performance, and
prevent server overloads or bottlenecks.

LAHIRU
LIYANAPATHIRANA

Page 2 of 27



Modern applications serve millions of users concurrently.
A robust load-balancing layer is essential for ensuring
high availability, fault tolerance, and consistent
performance.

High Availability: Maintains system uptime by
distributing traffic across multiple servers.

Fault Tolerance: Automatically detects server
failures and reroutes traffic to healthy servers.

Scalability: Supports horizontal scaling by adding
more servers to handle growing traffic loads.

Performance: Enhances response times and overall
user experience.

Security: Helps mitigate DDoS attacks and shields
backend systems from direct exposure.

Key Benefits of Load Balancing

LAHIRU
LIYANAPATHIRANA

Page 3 of 27



The following are common load-balancing strategies:

Round Robin

Weighted Round Robin

Least Connections

Weighted Least Connections

IP Hash

Least Response Time

Resource-Based

Random

Load Balancing Strategies

LAHIRU
LIYANAPATHIRANA

Page 4 of 27



The Round Robin is one of the simplest and most widely
adopted load-balancing algorithms.

It is a static load-balancing strategy that distributes
client requests sequentially across a pool of servers in a
cyclic manner.

This method treats all servers as equal and each server
receives an equal share of requests regardless of their
current load or capacity.

Round Robin

LAHIRU
LIYANAPATHIRANA

Page 5 of 27



Homogeneous server environments: 
Ideal for clusters with identical server specs (e.g., CPU,
RAM).

Basic deployments: 
Suitable for static content delivery or stateless
applications that don't require complex configuration.

Evenly distributed, predictable workloads: 
Ideal for systems with consistent request patterns, such
as basic web servers handling HTTP traffic.

Testing environments: 
Appropriate where even distribution is sufficient.

Round Robin

LAHIRU
LIYANAPATHIRANA

Page 6 of 27

Use Cases



Ignores server capacity: 
Treats all servers equally, which can lead to uneven
loads if servers have different processing capabilities.

Predictability issues: 
The fixed sequence may pose security risks in scenarios
where unpredictability is preferred.

Inefficiency with uneven loads: 
Struggles with workloads where request processing
times vary significantly.

No session persistence: 
Clients may connect to different servers in successive
requests, disrupting stateful applications.

Round Robin

LAHIRU
LIYANAPATHIRANA

Page 7 of 27

Limitations



The Weighted Round Robin algorithm extends the
basic Round Robin algorithm by assigning a weight to
each server based on its capacity or performance.

Servers with higher weights receive proportionally more
requests than those with lower weights.

This addresses the limitation of standard Round Robin in
heterogeneous environments.

Weighted Round Robin

LAHIRU
LIYANAPATHIRANA

Page 8 of 27



Heterogeneous environments: 
Ideal for environments with varying resources and server
capabilities.

Prioritized workloads: 
Directs critical tasks to higher-capacity servers.

Gradual scaling scenarios: 
Useful where new instances start with lower weight and
ramp up over time.

Weighted Round Robin

LAHIRU
LIYANAPATHIRANA

Page 9 of 27

Use Cases

Limitations
Static weights: 
Requires manual updates if server capacities change.

No real-time adaptation: 
Does not adjust to sudden traffic spikes or server
failures.



The Least Connections is a dynamic load-balancing
strategy that directs incoming requests to the server
with the fewest active connections at the time of the
request.

This approach helps distribute the load more evenly by
accounting for the current workload of each server and
adapting to real-time traffic conditions, making it
suitable for dynamic environments.

Least Connections

LAHIRU
LIYANAPATHIRANA

Page 10 of 27



Long-lived connections:
Effective for applications like databases or streaming
services where sessions vary in duration.

Dynamic environments: 
Adapts well to variable traffic loads (e.g., e-commerce
during flash sales).

Mixed workload environments: 
Useful where some requests are more resource-intensive
than others.

Least Connections

LAHIRU
LIYANAPATHIRANA

Page 11 of 27

Use Cases

Limitations
Ignores server capacity: 
Assumes all connections consume equal resources. This
may lead to an imbalance if connections have wildly
differing resource demands

No session affinity: 
Requires additional mechanisms for sticky sessions.



The Weighted Least Connections combines the
principles of Least Connections and Weighted Round
Robin.

It considers both the number of active connections and
the relative capacity (weight) of each server.

It distributes requests to servers with the lowest ratio of
connections to weight, allowing both current load and
server capacity to influence routing decisions.

Weighted Least Connections

LAHIRU
LIYANAPATHIRANA

Page 12 of 27



Heterogeneous server clusters: 
Suitable for clusters with varying processing
capabilities.

Mixed workload environments: 
Ideal for services with varied connection durations.

Hybrid cloud deployments: 
Effective in environments with different server types
(e.g., on-prem + cloud).

Resource-intensive applications: 
Prioritizes high-capacity servers for compute-heavy
tasks.

Scalable microservices platforms: 
Useful where instance resources vary dynamically.

Weighted Least Connections

LAHIRU
LIYANAPATHIRANA

Page 13 of 27

Use Cases



Overhead: 
Increased computational cost for dynamic adjustments.

Static weights: 
Requires manual updates if server capacities change.

Complex configuration: 
Requires continuous monitoring to adjust weights.
appropriately.

Weighted Least Connections

LAHIRU
LIYANAPATHIRANA

Page 14 of 27

Limitations



The IP Hash (or Source IP) load balancing assigns
requests to servers based on the client's IP address.

It uses a hash function on the client's IP address to
determine which server should receive the request.

As a result, all requests originating from the same IP
address are consistently directed to the same server.
This ensures session persistence, often referred to as
"sticky sessions.”

IP Hash

LAHIRU
LIYANAPATHIRANA

Page 15 of 27



IP Hash

LAHIRU
LIYANAPATHIRANA

Page 16 of 27

Stateful applications: 
Critical for banking platforms, e-commerce carts, or
real-time communication tools requiring consistent
client-server sessions.

Geolocation-based routing: 
Ensures clients from specific regions connect to
designated servers.

Content Delivery Networks (CDNs): 
Directs users to specific edge servers.

Gaming servers and API gateways: 
Where consistent client-server mapping is important.

Use Cases



IP Hash

LAHIRU
LIYANAPATHIRANA

Page 17 of 27

Traffic imbalance: 
High-activity clients can overload specific servers.

Uneven load distribution: 
If the hash function is not well-designed, some servers
may receive more traffic than others, causing
imbalances.

Adaptability issues: 
May not handle server additions or removals gracefully,
requiring rehashing and potential session disruptions.

Shared NAT problems: 
Clients behind NAT may share the same IP, leading to
skewed routing.

Limitations



The Least Response Time algorithm routes traffic to the
server with the lowest combination of active connections
and response time.

This strategy dynamically considers both the current load
(implicitly through response time) and the server's speed.

The load balancer continuously monitors the response
times of each server and routes new requests to the one
that is responding fastest.

Least Response Time

LAHIRU
LIYANAPATHIRANA

Page 18 of 27



Least Response Time

LAHIRU
LIYANAPATHIRANA

Page 19 of 27

Low-latency applications: 
Ideal for online gaming, VoIP, or high-frequency trading
platforms.

Performance-critical applications: 
Where response time is vital.

Real-time analytics: 
Ensures minimal delay for time-sensitive data
processing.

Interactive applications: 
Where user experience depends on speed.

Use Cases



Least Response Time

LAHIRU
LIYANAPATHIRANA

Page 20 of 27

Measurement overhead: 
Requires constant monitoring of server response times,
adding resource-intensive load and operational
complexity.

Geographic challenges: 
Difficult to compare latency across global servers.

Implementation complexity: 
Requires sophisticated monitoring systems.

Historical bias: 
Relies on past performance data, which may not reflect
current server conditions accurately.

Limitations



Resource-based load balancing routes traffic based on
real-time analysis of each server’s resource usage, such
as CPU, memory, network, or disk utilization.

The load balancer uses agents installed on each server
to collect and report these metrics and then routes new
requests to the server with the most available resources.

This approach makes routing decisions using actual
server resource availability rather than simplified proxies
like connection count.

Resource-Based

LAHIRU
LIYANAPATHIRANA

Page 21 of 27



Resource-Based

LAHIRU
LIYANAPATHIRANA

Page 22 of 27

Resource-intensive workloads: 
Suitable for applications requiring significant
computational resources (e.g., video encoding, data
analytics).

Auto-scaling cloud environments: 
Integrates with SDN controllers for adaptive scaling.

Heterogeneous servers: 
Ideal when servers have varying capacities, such as in
cloud infrastructures.

Critical systems:
Where maximizing resource utilization efficiency is key.

Use Cases



Resource-Based

LAHIRU
LIYANAPATHIRANA

Page 23 of 27

Complexity: 
Requires continuous monitoring of server resources,
adding operational overhead.

Latency: 
Real-time monitoring may introduce delays in routing
decisions.

Data freshness: 
Ensuring accurate, up-to-date resource data can be
challenging in large-scale environments.

Agent dependency: 
Requires agent software on each server and secure
communication with the load balancer.

Limitations



Random load balancing assigns each incoming request
to a randomly selected server from the pool. 

This simple approach can be surprisingly effective for
evenly distributing load, especially when requests are
uniform and servers are similar.

Random

LAHIRU
LIYANAPATHIRANA

Page 24 of 27



Random

LAHIRU
LIYANAPATHIRANA

Page 25 of 27

Simple setups: 
Easy to implement and suitable for small-scale
environments and early-stage setups.

High request volumes: 
With large numbers of requests, randomness can
statistically balance load.

Stateless microservices: 
Where session persistence is not required.

Use Cases

Limitations
Short-term imbalance: 
Can lead to uneven distribution temporarily.

No consideration for server capacity: 
Ignores differences in processing power or current load.

Not ideal for sessions: 
Can disrupt session persistence.



The right load-balancing strategy depends on traffic
patterns, server heterogeneity, and application
requirements.

Simply:

Use Round Robin or Random for simple, stateless
apps with identical servers.

Use Weighted algorithms when server capacities
differ.

Use Least Connections or Response Time for long-
lived sessions or latency-sensitive apps.

Use IP Hash for session persistence in stateful apps.

Use Resource-Based when routing should depend on
real-time CPU, memory, or bandwidth usage.

By understanding the strengths and limitations of each
strategy, system administrators can optimize application
performance, reliability, and scalability.

Conclusion

LAHIRU
LIYANAPATHIRANA

Page 26 of 27



Stay Tuned for 
More Posts 

Like This

LAHIRU
LIYANAPATHIRANA

Did You Find This
Post Useful?


