

Installation kubectl
- minikube

curl -LO
"https://dl.k8s.1o/release/[VERSION]/bin/1linux/amd64/kubectl”

chmod +x ./kubectl

sudo mv ./kubectl /fusr/local/bin/kubectl

kubectl version --client

curl -Lo minikube
"https://storage.googleapis.com/minikube/releases/latest/mini
kube-linux-amd64" & chmod +x minikube

minikube start

kubectl version --client

Configuration
kubectl

rt KUBECONFIG=[PATH_TO_KUBECONFIG_FILE]

kubectl config view

kubectl config set-cluster [CLUSTER_NAME] --server=
[SERVER_ADDRESS]

kubectl config set-credentials [USER_NAME] --client-
certificate=[CERTIFICATE_PATH] --client-key=[KEY_PATH]
kubectl config set-context [CONTEXT_NAME] --cluster=
[CLUSTER_NAME] --user=[USER_NAME]

kubectl config use-context [CONTEXT_NAME]

Pod

Pods are the smallest deployable units created and managed by
Kubernetes. A Pod is a group of one or more containers.

4)

Imoge Docker

nginx)

—

Pods can be created using YAML configuration files, providing more
control and flexibility.

: mycontainer
nage: nginx

mypod.yaml

Managing Pods

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

kubectl

apply -f mypod.yaml

run mypod --image=nginx

get pods

get pods -0 wide

describe pod mypod

logs mypod

exec mypod -- [COMMAND]

delete pod mypod

Deployment

A Deployment manages a set of replicas of your application, ensuring
its deployment and scaling.

Deployment

Replcoset

Image Docker Image Docker
zn?'mx) (t\s-'nrur)

Deployments are often defined and configured via YAML files.

apiVersion: apps/vl
kind: Deployment
metadata:

:: mydeployment

app: nginx

> nginx
;. nginx

Managing
Deployments

kubectl apply -f mydeployment.yaml

create deployment mydeployment --image=nginx

kubectl get deployments

kubectl scale deployment mydeployment --replicas=5

kubectl get deployment mydeployment

kubectl set image deployment/mydeployment nginx=nginx:1.16.1

kubectl rollout status deployment/mydeployment

kubectl rollout undo deployment/mydeployment

delete deployment mydeployment

Service

A Service in Kubernetes is an abstraction that defines a logical set of
Pods and a policy by which to access them.

Port 0

- Image Docker
S-‘mx)

Service Pert %0
(net App} Ll

Imoge Decker

/

Services can be configured in more detail via YAML files, especially to
define different types of Services such as ClusterIP, NodePort, or
LoadBalancer.

apiVersion: vl
: Service

data:

kubectl apply -f myservice.yaml

kubectl expose deployment mydeployment --port
type=ClusterIP

kubectl get services

kubectl delete service myservice

Volume

In Kubernetes, a volume is a unit of storage attached to a Pod,
existing as long as the Pod exists. A Persistent Volume
(PersistentVolume, PV), on the other hand, is a storage resource in
the cluster that remains independent of the lifespan of individual
Pods. PersistentVolumeClaims (PVCs) are storage requests by users
that can be bound to PVs to provide persistent storage.

Voluw\e
Persistont

Vo‘ume

apiVersion: vi1
PersistentVolumeClaim
metadata:

e: mypvc

essModes:

- ReadWriteOnce

resou

mycontainer
nginx

"“/var/ww/html"
: myvolume

“laimName: mypvc

kubectl apply -f myvolume.yaml

kubectl apply -f mypod.yaml

kubectl delete pvc mypvc

In Kubernetes, networks enable communication between different
components, such as Pods, Services, and outside of the cluster.

Internet Ingress HTTP S Port 80
Port €0 i (et App) = Image Docker
(ne‘ciipp)

Ingress is a Kubernetes object that manages external access to
services in a cluster, typically HTTP.

ion: networking.k8s.io/v1
Ingress
data:

pe: Prefix

Managing Ingress

apply -f myingress.yaml

kubectl get ingress

kubectl get ingress --all-namespaces

delete ingress myingress

Namespace

Kubernetes namespaces offer a way to divide cluster resources
among multiple users and projects. They are useful for creating
isolated environments within the same cluster.

s
Mamespace
r)
Volume fr
PEIS:StQﬂt F'UGE.
(
_ Y,
IMO\SE Docker
- \ (net App)
Service k_ L
(et App)
_ J

Managing
Namespaces

kubectl get namespaces

kubectl create namespace mynamespace

kubectl run mypod --image=nginx --namespace=mynamespace

get pods --namespace=mynamespace

kubectl get all --namespace=mynamespace

kubectl delete namespace mynamespace

Authentication

Security in Kubernetes heavily relies on the use of tokens for the
authentication of users and processes. Tokens can be API tokens,
service account tokens, or other forms of identifiers.

Kubernetes uses RBAC (Role-Based Access Control) to manage the
permissions of users and service accounts.

kind: Role
ion: rbac.authorization.k8s.i0/v1

: ["pods"]
["get", "watch", "list"]

apiVersion: vl
kind: ServiceAccount

lame : myser\riceaccount
namespace: default

Managing
Accounts

kubectl create serviceaccount myaccount

kubectl get secret $(kubectl get serviceaccount myaccount -o
jsonpath="'{.secrets[@].name}') -0 jsonpath='{.data.token}' |
base64 --decode

kubectl config set-credentials myaccount --token=[TOKEN]
kubectl config set-context --current --user=myaccount

kubectl apply -f myrole.yaml

kubectl create rolebinding myrolebinding --role=myrole --
serviceaccount=default:myaccount

kubectl get roles —-namespace=default

kubectl get rolebindings --namespace=default

kubectl delete role myrole --namespace=default

kubectl delete rolebinding myrolebinding --namespace=default

Network Policies

Network Policies in Kubernetes allow controlling how Pods can
communicate with each other and with other network endpoints.

Network policies are defined using YAML files that specify the rules
for incoming (ingress) and outgoing (egress) traffic.

apiVersion: networking.k8s.io/v1
: NetworkPolicy

app: myapp

dr: 10.0.0.0/24

Managing Network
olicies

kubectl apply -f my-policy.yaml

kubectl get networkpolicies --namespace=default

kubectl delete networkpolicy my-policy

ConfigMap

ConfigMaps allow storing configuration data external to Pods, aiding
in the management and deployment of applications.

ConfigMaps can be used in Pods as environment variables, command-
line arguments, or as configuration files in a volume.

sion: vl
: ConfigMap
data:

: myconfigmap

: valuel
': value?

ConfigMap

1 mypod

mycontainer
nginx

- name: CONFIG_KEY

valueFrom:

o: myconfigmap
/1 keyl

Managing
ConfigVlaps

kubectl apply -f configmap.yaml

kubectl create configmap myconfigmap --from-
literal=keyl=valuel --from-literal=key2=value2

kubectl create configmap myconfigmap --from-
file=path/to/configfile

kubectl edit configmap myconfigmap

kubectl create configmap myconfigmap --from-
file=path/to/newconfigfile --dry-run=client -o yaml | kubectl
apply -f -

kubectl delete configmap myconfigmap

Secret R

Kubernetes secrets are used to store and manage sensitive
information, such as passwords, OAuth tokens, and SSH keys. They
allow for the separation of sensitive details from configuration files
or container images.

apiVersion: vl

Secret

mysecret
: Opaque

: dmFsdWUx=
¢ dmFsdWUy=

i)

Secret

1 mypod

mycontainer
nginx

- name: SECRET_KEY

o: mysecret
/1 keyl

Managing Secrets

kubectl apply -f mysecret.yaml

kubectl create secret

generic mysecret --from-

literal=keyl=valuel --from-literal=key2=value2

kubectl create secret
file=path/to/bar

kubectl create secret
literal=keyl=newValue
apply -f -

kubectl delete secret

generic mysecret --from-

generic mysecret --from-
—dry-run=client -o yaml

mysecret

5

| kubectl

Managing Logs

Monitoring is crucial for maintaining the health and performance of
your Kubernetes cluster. It involves monitoring resources,
performance, and the health of Pods, nodes, and other components.

Kubernetes can be integrated with various monitoring tools such as
Prometheus, Grafana, etc.

Imoge Docker
(ﬂEtAPP)

/J’\

' ((

Prometheus Grafono Logs

kubectl logs mypod

