

Microsoft Azure

Kubernetes Best Practices

SECOND EDITION

Blueprints for Building Successful Applications on Kubernetes

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take advantage
of these technologies long before the official release of these titles.

Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson

Kubernetes Best Practices

by Brendan Burns, Eddie Villalba, Dave Strebel, and Lachlan Evenson

Copyright © 2023 Brendan Burns, Eddie Villalba, Dave Strebel, and

Lachlan Evenson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://oreilly.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com.

Acquisitions Editor: John Devins

Development Editor: Jill Leonard

Production Editor: Beth Kelly

Copyeditor:

Proofreader:

Indexer:

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2023: Second Edition

Revision History for the Early Release

2023-01-26: First Release

2023-02-15: Second Release

2023-07-07: Third Release

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920805021 for

release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.

Kubernetes Best Practices, the cover image, and related trade dress are

trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not

represent the publisher’s views. While the publisher and the authors have

used good faith efforts to ensure that the information and instructions

contained in this work are accurate, the publisher and the authors disclaim

all responsibility for errors or omissions, including without limitation

responsibility for damages resulting from the use of or reliance on this

work. Use of the information and instructions contained in this work is at

your own risk. If any code samples or other technology this work contains

or describes is subject to open source licenses or the intellectual property

rights of others, it is your responsibility to ensure that your use thereof

complies with such licenses and/or rights.

978-1-098-14211-7

[TO COME]

Chapter 1. Setting Up a Basic Service

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

This chapter describes the practices for setting up a simple multitier

application in Kubernetes. The application consists of a simple web

application and a database. Though this might not be the most complicated

application, it is a good place to start to orient to managing an application in

Kubernetes.

Application Overview

The application that we will use for our sample isn’t particularly complex.

It’s a simple journal service that stores its data in a Redis backend. It has a

separate static file server using NGINX. It presents two web paths on a

single URL. The paths are one for the journal’s RESTful application

programming interface (API), https://my-host.io/api, and a file server on the

main URL, https://my-host.io. It uses the Let’s Encrypt service for

managing Secure Sockets Layer (SSL) certificates. Figure 1-1 presents a

diagram of the application. Throughout this chapter, we build up this

application, first using YAML configuration files and then Helm charts.

Figure 1-1. An application diagram

Managing Configuration Files

Before we get into the details of how to construct this application in

Kubernetes, it is worth discussing how we manage the configurations

themselves. With Kubernetes, everything is represented declaratively. This

means that you write down the desired state of the application in the cluster

(generally in YAML or JSON files), and these declared desired states define

all of the pieces of your application. This declarative approach is far

preferable to an imperative approach in which the state of your cluster is the

sum of a series of changes to the cluster. If a cluster is configured

imperatively, it is very difficult to understand and replicate how the cluster

came to be in that state. This makes it very challenging to understand or

recover from problems with your application.

When declaring the state of your application, people typically prefer YAML

to JSON, though Kubernetes supports them both. This is because YAML is

somewhat less verbose and more human editable than JSON. However, it’s

worth noting that YAML is indentation sensitive; often errors in Kubernetes

configurations can be traced to incorrect indentation in YAML. If things

aren’t behaving as expected, indentation is a good thing to check. Most

editors have syntax highlighting support for both JSON and YAML, when

working with these files it is a good idea to install such tools to make it

easier to both author and files errors in your configurations. There is also an

excellent extension for Visual Studio Code that supports richer error

checking for Kubernetes files.

Because the declarative state contained in these YAML files serves as the

source of truth for your application, correct management of this state is

critical to the success of your application. When modifying your

application’s desired state, you will want to be able to manage changes,

validate that they are correct, audit who made changes, and possibly roll

things back if they fail. Fortunately, in the context of software engineering,

we have already developed the tools necessary to manage both changes to

the declarative state as well as audit and rollback. Namely, the best practices

around both version control and code review directly apply to the task of

managing the declarative state of your application.

These days most people store their Kubernetes configurations in Git.

Though the specific details of the version control system are unimportant,

many tools in the Kubernetes ecosystem expect files in a Git repository. For

code review there is much more heterogeneity, though clearly GitHub is

quite popular, others use on-premises code review tools or services.

Regardless of how you implement code review for your application

configuration, you should treat it with the same diligence and focus that you

apply to source control.

When it comes to laying out the filesystem for your application, it’s

generally worthwhile to use the directory organization that comes with the

filesystem to organize your components. Typically, a single directory is

used to encompass an Application Service for whatever definition of

Application Service is useful for your team. Within that directory,

subdirectories are used for subcomponents of the application.

For our application, we lay out the files as follows:

journal/
 frontend/
 redis/
 fileserver/

Within each directory are the concrete YAML files needed to define the

service. As you’ll see later on, as we begin to deploy our application to

multiple different regions or clusters, this file layout will become more

complicated.

Creating a Replicated Service Using Deployments

To describe our application, we’ll begin at the frontend and work

downward. The frontend application for the journal is a Node.js application

implemented in TypeScript. The complete application is slightly too large to

include in the book. The application exposes an HTTP service on port 8080

that serves requests to the /api/* path and uses the Redis backend to add,

delete, or return the current journal entries. This application can be built

into a container image using the included Dockerfile and pushed to your

own image repository. Then, substitute this image name in the YAML

examples that follow.

Best Practices for Image Management

Though in general, building and maintaining container images is beyond the

scope of this book, it’s worthwhile to identify some general best practices

for building and naming images. In general, the image build process can be

vulnerable to “supply-chain attacks.” In such attacks, a malicious user

injects code or binaries into some dependency from a trusted source that is

then built into your application. Because of the risk of such attacks, it is

critical that when you build your images you base them on only well-known

and trusted image providers. Alternately, you can build all your images

from scratch. Building from scratch is easy for some languages (e.g., Go)

that can build static binaries, but it is significantly more complicated for

interpreted languages like Python, JavaScript, or Ruby.

The other best practices for images relate to naming. Though the version of

a container image in an image registry is theoretically mutable, you should

treat the version tag as immutable. In particular, some combination of the

semantic version and the SHA hash of the commit where the image was

built is a good practice for naming images (e.g., v1.0.1-bfeda01f). If you

don’t specify an image version, latest is used by default. Although this

can be convenient in development, it is a bad idea for production usage

because latest is clearly being mutated every time a new image is built.

Creating a Replicated Application

Our frontend application is stateless; it relies entirely on the Redis backend

for its state. As a result, we can replicate it arbitrarily without affecting

traffic. Though our application is unlikely to sustain large-scale usage, it’s

still a good idea to run with at least two replicas so that you can handle an

unexpected crash or roll out a new version of the application without

downtime.

In Kubernetes, the ReplicaSet resource is the one that directly manages

replicating a specific version of your containerized application. Since the

version of all applications changes over time as you modify the code, it is

not a best practice to use a ReplicaSet directly. Instead, you use the

Deployment resource. A Deployment combines the replication capabilities

of ReplicaSet with versioning and the ability to perform a staged rollout. By

using a Deployment you can use Kubernetes’ built-in tooling to move from

one version of the application to the next.

The Kubernetes Deployment resource for our application looks as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 # All pods in the Deployment will have this l
 app: frontend
 name: frontend
 namespace: default

There are several things to note in this Deployment. First is that we are

using Labels to identify the Deployment as well as the ReplicaSets and the

pods that the Deployment creates. We’ve added the app: frontend

label to all of these resources so that we can examine all resources for a

particular layer in a single request. You’ll see that as we add other

resources, we’ll follow the same practice.

spec:
 # We should always have at least two replicas f
 replicas: 2
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:

 labels:
 app: frontend
 spec:
 containers:
 - image: my-repo/journal-server:v1-abcde
 imagePullPolicy: IfNotPresent
 name: frontend
 # TODO: Figure out what the actual resour
 resources:
 request:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"

Additionally, we’ve added comments in a number of places in the YAML.

Although these comments don’t make it into the Kubernetes resource stored

on the server, just like comments in code, they serve to help guide people

who are looking at this configuration for the first time.

You should also note that for the containers in the Deployment we have

specified both Request and Limit resource requests, and we’ve set Request

equal to Limit. When running an application, the Request is the reservation

that is guaranteed on the host machine where it runs. The Limit is the

maximum resource usage that the container will be allowed. When you are

starting out, setting Request equal to Limit will lead to the most predictable

behavior of your application. This predictability comes at the expense of

resource utilization. Because setting Request equal to Limit prevents your

applications from overscheduling or consuming excess idle resources, you

will not be able to drive maximal utilization unless you tune Request and

Limit very, very carefully. As you become more advanced in your

understanding of the Kubernetes resource model, you might consider

modifying Request and Limit for your application independently, but in

general most users find that the stability from predictability is worth the

reduced utilization. Often times, as our comment suggests, it is difficult to

know the right values for these resource limits. Starting by over-estimating

the estimates and then using monitoring to tune to the right values is a

pretty good approach. However, if you are launching a new service,

remember that the first time you see large scale traffic, your resources needs

will likely increase significantly. Additionally, there are some languages,

especially garbage collected languages, which will happily consume all

available memory, which can make it difficult to determine the correct

minimum for memory. In this case, some form of binary search may be

necessary, but remember to do this in a test environment so that it doesn’t

affect your production!

Now that we have the Deployment resource defined, we’ll check it into

version control, and deploy it to Kubernetes:

It is also a best practice to ensure that the contents of your cluster exactly

match the contents of your source control. The best pattern to ensure this is

to adopt a GitOps approach and deploy to production only from a specific

branch of your source control, using Continuous Integration

(CI)/Continuous Delivery (CD) automation. In this way you’re guaranteed

that source control and production match. Though a full CI/CD pipeline

might seem excessive for a simple application, the automation by itself,

independent of the reliability it provides, is usually worth the time taken to

set it up. And CI/CD is extremely difficult to retrofit into an existing,

imperatively deployed application.

git add frontend/deployment.yaml
git commit -m "Added deployment" frontend/deploym
kubectl apply -f frontend/deployment.yaml

There are also some pieces of this application description YAML (e.g., the

ConfigMap and secret volumes) as well as pod Quality of Service that we

examine in later sections.

Setting Up an External Ingress for HTTP Traffic

The containers for our application are now deployed, but it’s not currently

possible for anyone to access the application. By default, cluster resources

are available only within the cluster itself. To expose our application to the

world, we need to create a Service and load balancer to provide an external

IP address and to bring traffic to our containers. For the external exposure

we are actually going to use two Kubernetes resources. The first is a

Service that load-balances Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) traffic. In our case, we’re using the TCP

protocol. And the second is an Ingress resource, which provides HTTP(S)

load balancing with intelligent routing of requests based on HTTP paths and

hosts. With a simple application like this, you might wonder why we choose

to use the more complex Ingress, but as you’ll see in later sections, even

this simple application will be serving HTTP requests from two different

services. Furthermore, having an Ingress at the edge enables flexibility for

future expansion of our service.

NOTE

The Ingress resource is one of the older resources in Kubernetes and over the years

numerous issues have been raised with the way that it models HTTP access to

microservices. This has led to the development of the Gateway API for Kubernetes.

The Gateway API has been designed as an extension to Kubernetes and requires

additional components to be installed in your cluster. If you find that Ingress doesn’t

meet your needs consider moving to the Gateway API.

Before the Ingress resource can be defined, there needs to be a Kubernetes

Service for the Ingress to point to. We’ll use Labels to direct the Service to

the pods that we created in the previous section. The Service is significantly

simpler to define than the Deployment and looks as follows:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: frontend
 name: frontend
 namespace: default
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 app: frontend
 type: ClusterIP

After you’ve defined the Service, you can define an Ingress resource.

Unlike Service resources, Ingress requires an Ingress controller container to

be running in the cluster. There are a number of different implementations

you can choose from, either provided by your cloud provider, or

implemented using open source servers. If you choose to install an open

source ingress provider, it’s a good idea to use the Helm package manager

to install and maintain it. The nginx or haproxy Ingress providers are

popular choices:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend-ingress
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 pathType: Prefix
 backend:
 service:
 name: test
 port:
 number: 8080

Configuring an Application with ConfigMaps

Every application needs a degree of configuration. This could be the

number of journal entries to display per page, the color of a particular

background, a special holiday display, or many other types of configuration.

Typically, separating such configuration information from the application

itself is a best practice to follow.

There are a couple of different reasons for this separation. The first is that

you might want to configure the same application binary with different

configurations depending on the setting. In Europe you might want to light

up an Easter special, whereas in China you might want to display a special

for Chinese New Year. In addition to this environmental specialization,

there are agility reasons for the separation. Usually a binary release contains

multiple different new features; if you turn on these features via code, the

only way to modify the active features is to build and release a new binary,

which can be an expensive and slow process.

The use of configuration to activate a set of features means that you can

quickly (and even dynamically) activate and deactivate features in response

to user needs or application code failures. Features can be rolled out and

rolled back on a per-feature basis. This flexibility ensures that you are

continually making forward progress with most features even if some need

to be rolled back to address performance or correctness problems.

In Kubernetes this sort of configuration is represented by a resource called a

ConfigMap. A ConfigMap contains multiple key/value pairs representing

configuration information or a file. This configuration information can be

presented to a container in a pod via either files or environment variables.

Imagine that you want to configure your online journal application to

display a configurable number of journal entries per page. To achieve this,

you can define a ConfigMap as follows:

To configure your application, you expose the configuration information as

an environment variable in the application itself. To do that, you can add the

following to the container resource in the Deployment that you

defined earlier:

kubectl create configmap frontend-config --from-l

...
The containers array in the PodTemplate inside
containers:
 - name: frontend
 ...
 env:
 - name: JOURNAL_ENTRIES
 valueFrom:
 configMapKeyRef:
 name: frontend-config
 key: journalEntries
...

Although this demonstrates how you can use a ConfigMap to configure

your application, in the real world of Deployments, you’ll want to roll out

regular changes to this configuration with weekly rollouts or even more

frequently. It might be tempting to roll this out by simply changing the

ConfigMap itself, but this isn’t really a best practice. There are several

reasons for this: the first is that changing the configuration doesn’t actually

trigger an update to existing pods. Only when the pod is restarted is the

configuration applied. Because of this, the rollout isn’t health based and can

be ad hoc or random. Another is that the only versioning for the ConfigMap

is in your version control and it can be very difficult to perform a rollback.

A better approach is to put a version number in the name of the ConfigMap

itself. Instead of calling it frontend-config , call it frontend-

config-v1 . When you want to make a change, instead of updating the

ConfigMap in place, you create a new v2 ConfigMap, and then update the

Deployment resource to use that configuration. When you do this, a

Deployment rollout is automatically triggered, using the appropriate health

checking and pauses between changes. Furthermore, if you ever need to

rollback, the v1 configuration is sitting in the cluster and rollback is as

simple as updating the Deployment again.

Managing Authentication with Secrets

So far, we haven’t really discussed the Redis service to which our frontend

is connecting. But in any real application we need to secure connections

between our services. In part this is to ensure the security of users and their

data, and in addition, it is essential to prevent mistakes like connecting a

development frontend with a production database.

The Redis database is authenticated using a simple password. It might be

convenient to think that you would store this password in the source code of

your application, or in a file in your image, but these are both bad ideas for

a variety of reasons. The first is that you have leaked your secret (the

password) into an environment where you aren’t necessarily thinking about

access control. If you put a password into your source control, you are

aligning access to your source with access to all secrets. This is probably

not correct. You probably will have a broader set of users who can access

your source code than should really have access to your Redis instance.

Likewise, someone who has access to your container image shouldn’t

necessarily have access to your production database.

In addition to concerns about access control, another reason to avoid

binding secrets to source control and/or images is parameterization. You

want to be able to use the same source code and images in a variety of

environments (e.g., development, canary, and production). If the secrets are

tightly bound in source code or image, you need a different image (or

different code) for each environment.

Having seen ConfigMaps in the previous section, you might immediately

think that the password could be stored as a configuration and then

populated into the application as an application-specific configuration.

You’re absolutely correct to believe that the separation of configuration

from application is the same as the separation of secrets from application.

But the truth is that a secret is an important concept by itself. You likely

want to handle access control, handling, and updates of secrets in a different

way than a configuration. More important, you want your developers

thinking differently when they are accessing secrets than when they are

accessing configuration. For these reasons, Kubernetes has a built-in Secret

resource for managing secret data.

You can create a secret password for your Redis database as follows:

Obviously, you might want to use something other than a random number

for your password. Additionally, you likely want to use a secret/key

management service, either via your cloud provider, like Microsoft Azure

Key Vault, or an open source project, like HashiCorp’s Vault. When you are

using a key management service, they generally have tighter integration

with Kubernetes secrets.

kubectl create secret generic redis-passwd --from

NOTE

Secrets in Kubernetes are stored unecrypted by default. If you want to store secrets

encrypted, you can integrate with a key provider to give you a key that Kubernetes will

use to encrypt all of the secrets in the cluster. Note that although this secures the keys

against direct attacks to the etcd database, you still need to ensure that access via

the Kubernetes API server is properly secured.

After you have stored the Redis password as a secret in Kubernetes, you

then need to bind that secret to the running application when deployed to

Kubernetes. To do this, you can use a Kubernetes Volume. A Volume is

effectively a file or directory that can be mounted into a running container

at a user-specified location. In the case of secrets, the Volume is created as a

tmpfs RAM-backed filesystem and then mounted into the container. This

ensures that even if the machine is physically compromised (quite unlikely

in the cloud, but possible in the datacenter), the secrets are much more

difficult to obtain by the attacker.

To add a secret volume to a Deployment, you need to specify two new

entries in the YAML for the Deployment. The first is a volume entry for

the pod that adds the volume to the pod:

...
 volumes:
 - name: passwd-volume
 secret:
 secretName: redis-passwd

Many secret providers have Container Storage Interface (CSI) drivers that

enable you to mount them directly into a Pod without using Kubernetes

secrets at all. If you use one of these CSI drivers your volume would instead

look like:

...
 volumes:
 - name: passwd-volume
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true
 volumeAttributes:
 secretProviderClass: "azure-sync"
...

Regardles of which, with the volume defined in the pod, you need to mount

it into a specific container. You do this via the volumeMounts field in

the container description:

...
 volumeMounts:
 - name: passwd-volume
 readOnly: true
 mountPath: "/etc/redis-passwd"
...

This mounts the secret volume into the redis-passwd directory for

access from the client code. Putting this all together, you have the complete

Deployment as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: frontend
 name: frontend
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: frontend
 template:
 metadata:
 labels:
 app: frontend
 spec:
 containers:
 - image: my-repo/journal-server:v1-abcde
 imagePullPolicy: IfNotPresent
 name: frontend
 volumeMounts:
 - name: passwd-volume
 readOnly: true

 mountPath: "/etc/redis-passwd"
 resources:
 requests:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"

volumes:

At this point we have configured the client application to have a secret

available to authenticate to the Redis service. Configuring Redis to use this

password is similar; we mount it into the Redis pod and load the password

from the file.

Deploying a Simple Stateful Database

Although conceptually deploying a stateful application is similar to

deploying a client like our frontend, state brings with it more complications.

The first is that in Kubernetes a pod can be rescheduled for a number of

reasons, such as node health, an upgrade, or rebalancing. When this

happens, the pod might move to a different machine. If the data associated

with the Redis instance is located on any particular machine or within the

container itself, that data will be lost when the container migrates or

restarts. To prevent this, when running stateful workloads in Kubernetes its

important to use remote PersistentVolumes to manage the state associated

with the application.

There is a wide variety of different implementations of PersistentVolumes

in Kubernetes, but they all share common characteristics. Like secret

 volumes:
 - name: passwd-volume
 secret:
 secretName: redis-passwd

volumes described earlier, they are associated with a pod and mounted into

a container at a particular location. Unlike secrets, PersistentVolumes are

generally remote storage mounted through some sort of network protocol,

either file based, such as Network File System (NFS) or Server Message

Block (SMB), or block based (iSCSI, cloud-based disks, etc.). Generally,

for applications such as databases, block-based disks are preferable because

they generally offer better performance, but if performance is less of a

consideration, file-based disks can sometimes offer greater flexibility.

NOTE

Managing state in general is complicated, and Kubernetes is no exception. If you are

running in an environment that supports stateful services (e.g., MySQL as a service,

Redis as a service), it is generally a good idea to use those stateful services. Initially,

the cost premium of a stateful Software as a Service (SaaS) might seem expensive, but

when you factor in all the operational requirements of state (backup, data locality,

redundancy, etc.), and the fact that the presence of state in a Kubernetes cluster makes

it difficult to move applications between clusters, it becomes clear that, in most cases,

storage SaaS is worth the price premium. In on-premises environments where storage

SaaS isn’t available, having a dedicated team provide storage as a service to the entire

organization is definitely a better practice than allowing each team to roll its own.

To deploy our Redis service, we use a StatefulSet resource. Added after the

initial Kubernetes release as a complement to ReplicaSet resources, a

StatefulSet gives slightly stronger guarantees such as consistent names (no

random hashes!) and a defined order for scale-up and scale-down. When

you are deploying a singleton, this is somewhat less important, but when

you want to deploy replicated state, these attributes are very convenient.

To obtain a PersistentVolume for our Redis, we use a

PersistentVolumeClaim. You can think of a claim as a “request for

resources.” Our Redis declares abstractly that it wants 50 GB of storage,

and the Kubernetes cluster determines how to provision an appropriate

PersistentVolume. There are two reasons for this. The first is so that we can

write a StatefulSet that is portable between different clouds and on-

premises, where the details of disks might be different. The other reason is

that although many PersistentVolume types can be mounted to only a single

pod, we can use volume claims to write a template that can be replicated

and yet have each pod assigned its own specific PersistentVolume.

The following example shows a Redis StatefulSet with PersistentVolumes:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: redis
spec:
 serviceName: "redis"
 replicas: 1
 selector:
 matchLabels:
 app: redis
 template:
 metadata:
 labels:

 app: redis
 spec:
 containers:
 - name: redis
 image: redis:5-alpine
 ports:
 - containerPort: 6379
 name: redis
 volumeMounts:
 - name: data
 mountPath: /data
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

This deploys a single instance of your Redis service, but suppose you want

to replicate the Redis cluster for scale-out of reads and resiliency to failures.

To do this you need to obviously increase the number of replicas to three,

but you also need to ensure that the two new replicas connect to the write

master for Redis.

When you create the headless Service for the Redis StatefulSet, it creates a

DNS entry redis-0.redis ; this is the IP address of the first replica.

You can use this to create a simple script that can launch in all of the

containters:

You can create this script as a ConfigMap:

You then add this ConfigMap to your StatefulSet and use it as the command

for the container. Let’s also add in the password for authentication that we

created earlier in the chapter.

The complete three-replica Redis looks as follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: redis
spec:
 serviceName: "redis"
 replicas: 3
 selector:
 matchLabels:

#!/bin/sh

PASSWORD=$(cat /etc/redis-passwd/passwd)

if [["${HOSTNAME}" == "redis-0"]]; then
 redis-server --requirepass ${PASSWORD}
else
 redis-server --slaveof redis-0.redis 6379 --mas
fi

kubectl create configmap redis-config --from-file

 app: redis
 template:
 metadata:
 labels:
 app: redis
 spec:
 containers:
 - name: redis
 image: redis:5-alpine
 ports:
 - containerPort: 6379
 name: redis
 volumeMounts:
 - name: data
 mountPath: /data
 - name: script
 mountPath: /script/launch.sh
 subPath: launch.sh
 - name: passwd-volume
 mountPath: /etc/redis-passwd
 command:
 - sh
 - -c
 - /script/launch.sh
 volumes:
 - name: script
 configMap:
 name: redis-config
 defaultMode: 0777
 - name: passwd-volume
 secret:
 secretName: redis-passwd
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:

 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

Creating a TCP Load Balancer by Using Services

Now that we’ve deployed the stateful Redis service, we need to make it

available to our frontend. To do this, we create two different Kubernetes

Services. The first is the Service for reading data from Redis. Because

Redis is replicating the data to all three members of the StatefulSet, we

don’t care which read our request goes to. Consequently, we use a basic

Service for the reads:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: redis
 name: redis
 namespace: default
spec:
 ports:
 - port: 6379
 protocol: TCP
 targetPort: 6379
 selector:
 app: redis
 sessionAffinity: None
 type: ClusterIP

To enable writes, you need to target the Redis master (replica #0). To do

this, create a headless Service. A headless Service doesn’t have a cluster IP

address; instead, it programs a DNS entry for every pod in the StatefulSet.

This means that we can access our master via the redis-0.redis DNS

name:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: redis-write
 name: redis-write
spec:
 clusterIP: None
 ports:
 - port: 6379
 selector:
 app: redis

Thus, when we want to connect to Redis for writes or transactional

read/write pairs, we can build a separate write client connected to the

redis-0.redis-write server.

Using Ingress to Route Traffic to a Static File
Server

The final component in our application is a static file server. The static file

server is responsible for serving HTML, CSS, JavaScript, and image files.

It’s both more efficient and more focused for us to separate static file

serving from our API serving frontend described earlier. We can easily use

a high-performance static off-the-shelf file server like NGINX to serve files

while we allow our development teams to focus on the code needed to

implement our API.

Fortunately, the Ingress resource makes this source of mini-microservice

architecture very easy. Just like the frontend, we can use a Deployment

resource to describe a replicated NGINX server. Let’s build the static

images into the NGINX container and deploy them to each replica. The

Deployment resource looks as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: fileserver
 name: fileserver
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 app: fileserver
 template:
 metadata:
 labels:
 app: fileserver

Now that there is a replicated static web server up and running, you will

likewise create a Service resource to act as a load balancer:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: fileserver
 name: fileserver
 namespace: default
spec:
 ports:
 - port: 80

pp
 spec:
 containers:
 # This image is intended as an example, rep
 # static files image.
 - image: my-repo/static-files:v1-abcde
 imagePullPolicy: Always
 name: fileserver
 terminationMessagePath: /dev/termination-
 terminationMessagePolicy: File

 resources:
 requests:
 cpu: "1.0"
 memory: "1G"
 limits:
 cpu: "1.0"
 memory: "1G"
 dnsPolicy: ClusterFirst
 restartPolicy: Always

 protocol: TCP
 targetPort: 80
 selector:
 app: fileserver
 sessionAffinity: None
 type: ClusterIP

Now that you have a Service for your static file server, extend the Ingress

resource to contain the new path. It’s important to note that you must place

the / path after the /api path, or else it would subsume /api and

direct API requests to the static file server. The new Ingress looks like this:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend-ingress
spec:
 rules:
 - http:
 paths:
 - path: /api
 pathType: Prefix
 backend:
 service:
 name: fileserver
 port:
 number: 8080
 # NOTE: this should come after /api or else
 - path: /
 pathType: Prefix
 backend:
 service:

Parameterizing Your Application by Using Helm

Everything that we have discussed so far focuses on deploying a single

instance of our service to a single cluster. However, in reality, nearly every

service and every service team is going to need to deploy to multiple

different environments (even if they share a cluster). Even if you are a

single developer working on a single application, you likely want to have at

least a development version and a production version of your application so

that you can iterate and develop without breaking production users. After

you factor in integration testing and CI/CD, it’s likely that even with a

single service and a handful of developers, you’ll want to deploy to at least

three different environments, and possibly more if you consider handling

datacenter-level failures.

An initial failure mode for many teams is to simply copy the files from one

cluster to another. Instead of having a single frontend/ directory, have a

frontend-production/ and frontend-development/ pair of directories. The

reason this is so dangerous is because you are now in charge of ensuring

that these files remain synchronized with one another. If they were intended

to be entirely identical, this might be easy, but some skew between

 name: fileserver
 port:
 number: 80

development and production is expected because you will be developing

new features; it’s critical that the skew is both intentional, and easily

managed.

Another option to achieve this would be to use branches and version

control, with the production and development branches leading off from a

central repository, and the differences between the branches clearly visible.

This can be a viable option for some teams, but the mechanics of moving

between branches are challenging when you want to simultaneously deploy

software to different environments (e.g., a CI/CD system that deploys to a

number of different cloud regions).

Consequently, most people end up with a templating system. A templating

system combines templates, which form the centralized backbone of the

application configuration, with parameters that specialize the template to a

specific environment configuration. In this way, you can have a generally

shared configuration, with intentional (and easily understood)

customization as needed. There are a variety of different template systems

for Kubernetes, but the most popular by far is a system called Helm.

In Helm, an application is packaged in a collection of files called a chart

(nautical jokes abound in the world of containers and Kubernetes).

A chart begins with a chart.yaml file, which defines the metadata for the

chart itself:

This file is placed in the root of the chart directory (e.g., frontend/). Within

this directory, there is a templates directory, which is where the templates

are placed. A template is basically a YAML file from the previous

examples, with some of the values in the file replaced with parameter

references. For example, imagine that you want to parameterize the number

of replicas in your frontend. Previously, here’s what the Deployment had:

...
spec:
 replicas: 2
...

In the template file (frontend-deployment.tmpl), it instead looks like the

following:

...
spec:
 replicas: {{ .replicaCount }}
...

apiVersion: v1
appVersion: "1.0"
description: A Helm chart for our frontend journa
name: frontend
version: 0.1.0

This means that when you deploy the chart, you’ll substitute the value for

replicas with the appropriate parameter. The parameters themselves are

defined in a values.yaml file. There will be one values file per environment

where the application should be deployed. The values file for this simple

chart would look like this:

replicaCount: 2

Putting this all together, you can deploy this chart using the helm tool, as

follows:

This parameterizes your application and deploys it to Kubernetes. Over

time these parameterizations will grow to encompass the variety of different

environments for your application.

Deploying Services Best Practices

Kubernetes is a powerful system that can seem complex. But setting up a

basic application for success can be straightforward if you use the following

best practices:

helm install path/to/chart --values path/to/envir

Most services should be deployed as Deployment resources.

Deployments create identical replicas for redundancy and scale.

Deployments can be exposed using a Service, which is effectively a load

balancer. A Service can be exposed either within a cluster (the default)

or externally. If you want to expose an HTTP application, you can use an

Ingress controller to add things like request routing and SSL.

Eventually you will want to parameterize your application to make its

configuration more reusable in different environments. Packaging tools

like Helm are the best choice for this kind of parameterization.

Summary

The application built in this chapter is a simple one, but it contains nearly

all of the concepts you’ll need to build larger, more complicated

applications. Understanding how the pieces fit together and how to use

foundational Kubernetes components is key to successfully working with

Kubernetes.

Laying the correct foundation via version control, code review, and

continuous delivery of your service ensures that no matter what you build, it

is built in a solid manner. As we go through the more advanced topics in

subsequent chapters, keep this foundational information in mind.

Chapter 2. Developer Workflows

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

Kubernetes was built for reliably operating software. It simplifies deploying

and managing applications with an application-oriented API, self-healing

properties, and useful tools like Deployments for zero downtime rollout of

software. Although all of these tools are useful, they don’t do much to make

it easier to develop applications for Kubernetes. Furthermore, even though

many clusters are designed to run production applications and thus are

rarely accessed by developer workflows, it is also critical to enable

development workflows to target Kubernetes, and this typically means

having a cluster or at least part of a cluster that is intended for development.

Setting up such a cluster to facilitate easy development of applications for

Kubernetes is a critical part of ensuring success with Kubernetes. Clearly if

there is no code being built for your cluster, the cluster itself isn’t

accomplishing much.

Goals

Before we describe the best practices for building out development clusters,

it is worth stating our goals for such clusters. Obviously, the ultimate goal is

to enable developers to rapidly and easily build applications on Kubernetes,

but what does that really mean in practice and how is that reflected in

practical features of the development cluster?

It is useful to identify phases of developer interaction with the cluster.

The first phase is onboarding. This is when a new developer joins the team.

This phase includes giving the user a login to the cluster as well as getting

them oriented to their first deployment. The goal for this phase is to get a

developer’s feet wet in a minimal amount of time. You should set a key

performance indicator (KPI) goal for this process. A reasonable goal would

be that a user could go from nothing to the current application at HEAD

running in less than half an hour. Every time someone is new to the team,

test how you are doing against this goal.

The second phase is developing. This is the day-to-day activity of the

developer. The goal for this phase is to ensure rapid iteration and

debugging. Developers need to quickly and repeatedly push code to the

cluster. They also need to be able to easily test their code and debug it when

it isn’t operating properly. The KPI for this phase is more challenging to

measure, but you can estimate it by measuring the time to get a pull request

(PR) or change up and running in the cluster, or with surveys of the user’s

perceived productivity, or both. You will also be able to measure this in the

overall productivity of your teams.

The third phase is testing. This phase is interleaved with developing and is

used to validate the code before submission and merging. The goals for this

phase are two-fold. First, the developer should be able to run all tests for

their environment before a PR is submitted. Second, all tests should

automatically run before code is merged into the repository. In addition to

these goals you should also set a KPI for the length of time the tests take to

run. As your project becomes more complex, it’s natural for more and more

tests to take a longer time. As this happens, it might become valuable to

identify a smaller set of smoke tests that a developer can use for initial

validation before submitting a PR. You should also have a very strict KPI

around test flakiness. A flaky test is one that occasionally (or not so

occasionally) fails. In any reasonably active project, a flakiness rate of more

than one failure per one thousand runs will lead to developer friction. You

need to ensure that your cluster environment does not lead to flaky tests.

Whereas sometimes flaky tests occur due to problems in the code, they can

also occur because of interference in the development environment (e.g.,

running out of resources and noisy neighbors). You should ensure that your

development environment is free of such issues by measuring test flakiness

and acting quickly to fix it.

Building a Development Cluster

When people begin to think about developing on Kubernetes, one of the

first choices that occurs is whether to build a single large development

cluster or to have one cluster per developer. Note that this choice only

makes sense in an environment in which dynamic cluster creation is easy,

such as the public cloud. In physical environments, its possible that one

large cluster is the only choice.

If you do have a choice you should consider the pros and cons of each

option. If you choose to have a development cluster per user, the significant

downside of this approach is that it will be more expensive and less

efficient, and you will have a large number of different development

clusters to manage. The extra costs come from the fact that each cluster is

likely to be heavily underutilized. Also, with developers creating different

clusters, it becomes more difficult to track and garbage-collect resources

that are no longer in use. The advantage of the cluster-per-user approach is

simplicity: each developer can self-service manage their own cluster, and

from isolation, it’s much more difficult for different developers to step on

one another’s toes.

On the other hand, a single development cluster will be significantly more

efficient; you can likely sustain the same number of developers on a shared

cluster for one-third the price (or less). Plus, it’s much easier for you to

install shared cluster services, for example, monitoring and logging, which

makes it significantly easier to produce a developer-friendly cluster. The

downside of a shared development cluster is the process of user

management and potential interference between developers. Because the

process of adding new users and namespaces to the Kubernetes cluster isn’t

currently streamlined, you will need to activate a process to onboard new

developers. Although Kubernetes resource management and Role-Based

Access Control (RBAC) can reduce the probability that two developers

conflict, it is always possible that a user will brick the development cluster

by consuming too many resources so that other applications and developers

won’t schedule. Additionally, you will still need to ensure that developers

don’t leak and forget about resources they’ve created. This is somewhat

easier, though, than the approach in which developers each create their own

clusters.

Even though both approaches are feasible, generally, our recommendation

is to have a single large cluster for all developers. Although there are

challenges in interference between developers, they can be managed and

ultimately the cost efficiency and ability to easily add organization-wide

capabilities to the cluster outweigh the risks of interference. But you will

need to invest in a process for onboarding developers, resource

management, and garbage collection. Our recommendation would be to try

a single large cluster as a first option. As your organization grows (or if it is

already large), you might consider having a cluster per team or group (10 to

20 people) rather than a giant cluster for hundreds of users. This can make

both billing and management easier.

Setting Up a Shared Cluster for Multiple
Developers

When setting up a large cluster, the primary goal is to ensure that multiple

users can simultaneously use the cluster without stepping on one another’s

toes. The obvious way to separate your different developers is with

Kubernetes namespaces. Namespaces can serve as scopes for the

deployment of services so that one user’s frontend service doesn’t interfere

with another user’s frontend service. Namespaces are also scopes for

RBAC, ensuring that one developer cannot accidentally delete another

developer’s work. Thus, in a shared cluster it makes sense to use a

namespace as a developer’s workspace. The processes for onboarding users

and creating and securing a namespace are described in the following

sections.

Onboarding Users

Before you can assign a user to a namespace, you have to onboard that user

to the Kubernetes cluster itself. To achieve this, there are two options. You

can use certificate-based authentication to create a new certificate for the

user and give them a kubeconfig file that they can use to log in, or you can

configure your cluster to use an external identity system (for example,

Microsoft Azure Active Directory or AWS Identity and Access

Management [IAM]) for cluster access.

In general, using an external identity system is a best practice because it

doesn’t require that you maintain two different sources of identity,

additionally most external systems use short-lived tokens rather than long

lived certificates so the accidental disclosure of a token has a time bound

security impact. If at all possible you should restrict your developers to

proving their identity via an external identity provider.

Unfortunately, in some cases this isn’t possible and you need to use

certificates. Fortunately, you can use the Kubernetes certificate API for

creating and managing such certificates. Here’s the process for adding a

new user to an existing cluster.

First, you need to generate a certificate signing request to generate a new

certificate. Here is a simple Go program to do this:

package main

import (

"crypto/rand"

 crypto/rand
 "crypto/rsa"

 "crypto/x509"
 "crypto/x509/pkix"
 "encoding/asn1"
 "encoding/pem"
 "os"
)

func main() {
 name := os.Args[1]
 user := os.Args[2]

 key, err := rsa.GenerateKey(rand.Reader,
 if err != nil {
 panic(err)
 }
 keyDer := x509.MarshalPKCS1PrivateKey(key
 keyBlock := pem.Block{
 Type: "RSA PRIVATE KEY",
 Bytes: keyDer,
 }
 keyFile, err := os.Create(name + "-key.pe
 if err != nil {
 panic(err)
 }
 pem.Encode(keyFile, &keyBlock)
 keyFile.Close()

 commonName := user
 // You may want to update these too
 emailAddress := "someone@myco.com"

 org := "My Co, Inc."
 orgUnit := "Widget Farmers"
 city := "Seattle"

 state := "WA"
 country := "US"

 subject := pkix.Name{
 CommonName: commonName,
 Country: []string{coun
 Locality: []string{city
 Organization: []string{org}
 OrganizationalUnit: []string{orgU
 Province: []string{stat
 }

 asn1, err := asn1.Marshal(subject.ToRDNSe
 if err != nil {
 panic(err)
 }
 csr := x509.CertificateRequest{
 RawSubject: asn1,
 EmailAddresses: []string{emai
 SignatureAlgorithm: x509.SHA256Wi
 }

 bytes, err := x509.CreateCertificateReque
 if err != nil {
 panic(err)
 }
 csrFile, err := os.Create(name + ".csr")
 if err != nil {
 panic(err)
 }

 pem.Encode(csrFile, &pem.Block{Type: "CER
 csrFile.Close()
}

You can run this as follows:

go run csr-gen.go client <user-name>;

This creates files called client-key.pem and client.csr. You then can run the

following script to create and download a new certificate:

#!/bin/bash

csr_name="my-client-csr"
name="${1:-my-user}"

csr="${2}"

cat <<EOF | kubectl create -f -
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata:
 name: ${csr_name}

spec:
 groups:
 - system:authenticated
 request: $(cat ${csr} | base64 | tr -d '\n')
 usages:
 - key encipherment
 - client auth
EOF

echo
echo "Approving signing request."
kubectl certificate approve ${csr_name}

This script prints out the final information that you can add to a kubeconfig

file to enable that user. Of course, the user has no access privileges, so you

will need to apply Kubernetes RBAC for the user in order to grant them

privileges to a namespace.

Creating and Securing a Namespace

The first step in provisioning a namespace is actually just creating it. You

can do this using kubectl create namespace my-namespace .

echo
echo "Downloading certificate."
kubectl get csr ${csr_name} -o jsonpath='{.status
 | base64 --decode > $(basename ${csr} .cs

echo
echo "Cleaning up"
kubectl delete csr ${csr_name}

echo
echo "Add the following to the 'users' list in yo
echo "- name: ${name}"
echo " user:"
echo " client-certificate: ${PWD}/$(basename $
echo " client-key: ${PWD}/$(basename ${csr} .c
echo
echo "Next you may want to add a role-binding for

But the truth is that when you create a namespace, you want to attach a

bunch of metadata to that namespace, for example, the contact information

for the team that builds the component deployed into the namespace.

Generally, this is in the form of annotations; you can either generate the

YAML file using some templating, such as Jinja or others, or you can create

and then annotate the namespace. A simple script to do this looks like:

ns='my-namespace'
team='some team'
kubectl create namespace ${ns}
kubectl annotate namespace ${ns} team=${team}

When the namespace is created, you want to secure it by ensuring that you

can grant access to the namespace to a specific user. To do this, you can

bind a role to a user in the context of that namespace. You do this by

creating a RoleBinding object within the namespace itself. The

RoleBinding might look like this:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: example
 namespace: my-namespace
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: edit
subjects:
- apiGroup: rbac.authorization.k8s.io

 kind: User
 name: myuser

To create it, you simply run kubectl create -f role-

binding.yaml . Note that you can reuse this binding as much as you

want so long as you update the namespace in the binding to point to the

correct namespace. If you ensure that the user doesn’t have any other role

bindings, you can be assured that this namespace is the only part of the

cluster to which the user has access. A reasonable practice is to also grant

reader access to the entire cluster; in this way developers can see what

others are doing in case it is interfering with their work. Be careful in

granting such read access, however, because it will include access to secret

resources in the cluster. Generally, in a development cluster this is OK

because everyone is in the same organization and the secrets are used only

for development; however, if this is a concern, then you can create a more

fine-grained role that eliminates the ability to read secrets.

If you want to limit the amount of resources consumed by a particular

namespace, you can use the ResourceQuota resource to set a limit to the

total number of resources that any particular namespace consumes. For

example, the following quota limits the namespace to 10 cores and 100 GB

of memory for both Request and Limit for the pods in the namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
name: limit-compute

Managing Namespaces

Now that you have seen how to onboard a new user and how to create a

namespace to use as a workspace, the question remains how to assign a

developer to the namespace. As with many things, there is no single perfect

answer; rather, there are two approaches. The first is to give each user their

own namespace as part of the onboarding process. This is useful because

after a user is onboarded, they always have a dedicated workspace in which

they can develop and manage their applications. However, making the

developer’s namespace too persistent encourages the developer to leave

things lying around in the namespace after they are done with them, and

garbage-collecting and accounting individual resources is more

complicated. An alternate approach is to temporarily create and assign a

namespace with a bounded time to live (TTL). This ensures that the

developer thinks of the resources in the cluster as transient and that it is

 name: limit-compute
 namespace: my-namespace
spec:
 hard:
 # These look a little odd because they're not
 # but they refer to the requests and limi
 # a Pod
 requests.cpu: "10"
 requests.memory: 100Gi
 limits.cpu: 10
 limits.memory: 100Gi

easy to build automation around the deletion of entire namespaces when

their TTL has expired.

In this model, when the developer wants to begin a new project, they use a

tool to allocate a new namespace for the project. When they create the

namespace, it has a selection of metadata associated with the namespace for

management and accounting. Obviously, this metadata includes the TTL for

the namespace, but it also includes the developer to which it is assigned, the

resources that should be allocated to the namespace (e.g., CPU and

memory), and the team and purpose of the namespace. This metadata

ensures that you can both track resource usage and delete the namespace at

the right time.

Developing the tooling to allocate namespaces on demand can seem like a

challenge, but simple tooling is relatively simple to develop. For example,

you can achieve the allocation of a new namespace with a simple script that

creates the namespace and prompts for the relevant metadata to attach to the

namespace.

If you want to get more integrated with Kubernetes, you can use custom

resource definitions (CRDs) to enable users to dynamically create and

allocate new namespaces using the kubectl tool. If you have the time

and inclination, this is definitely a good practice because it makes

namespace management declarative and also enables the use of Kubernetes

RBAC.

After you have tooling to enable the allocation of namespaces, you also

need to add tooling to reap namespaces when their TTL has expired. Again,

you can accomplish this with a simple script that examines the namespaces

and deletes those that have an expired TTL.

You can build this script into a container and use a ScheduledJob to

run it at an interval like once per hour. Combined together, these tools can

ensure that developers can easily allocate independent resources for their

project as needed, but those resources will also be reaped at the proper

interval to ensure that you don’t have wasted resources and that old

resources don’t get in the way of new development.

Cluster-Level Services

In addition to tooling to allocate and manage namespaces, there are also

useful cluster-level services, and it’s a good idea to enable them in your

development cluster. The first is log aggregation to a central Logging as a

Service (LaaS) system. One of the easiest things for a developer to do to

understand the operation of their application is to write something to

STDOUT. Although you can access these logs via kubectl logs , that

log is limited in length and is not particularly searchable. If you instead

automatically ship those logs to a LaaS system such as a cloud service or an

Elasticsearch cluster, developers can easily search through logs for relevant

information as well as aggregate logging information across multiple

containers in their service.

Enabling Developer Workflows

Now that we succesfully have a shared cluster setup and we can onboard

new application developers to the cluster itself, we need to actually get

them developing their application. Remember that one of the key KPIs that

we are measuring is the time from onboarding to an initial application

running in the cluster. It’s clear that via the just-described onboarding

scripts we can quickly authenticate a user to a cluster and allocate a

namespace, but what about getting started with the application?

Unfortunately, even though there are a few techniques that help with this

process, it generally requires more convention than automation to get the

initial application up and running. In the following sections, we describe

one approach to achieving this; it is by no means the only approach or the

only solution. You can optionally apply the approach as is or be inspired by

the ideas to arrive at your own solution.

Initial Setup

One of the main challenges to deploying an application is the installation of

all of the dependencies. In many cases, especially in modern microservice

architectures, to even get started developing on one of the microservices

requires the deployment of multiple dependencies, either databases or other

microservices. Although the deployment of the application itself is

relatively straightforward, the task of identifying and deploying all of the

dependencies to build the complete application is often a frustrating case of

trial and error married with incomplete or out-of-date instructions.

To address this issue, it is often valuable to introduce a convention for

describing and installing dependencies. This can be seen as the equivalent

of something like npm install , which installs all of the required

JavaScript dependencies. Eventually, there is likely to be a tool similar to

npm that provides this service for Kubernetes-based applications, but until

then, the best practice is to rely on convention within your team.

One such option for a convention is the creation of a setup.sh script within

the root directory of all project repositories. The responsibility of this script

is to create all dependencies within a particular namespace to ensure that all

of the application’s dependencies are correctly created. For example, a

setup script might look like the following:

You then could integrate this script with npm by adding the following to

your package.json:

{
 ...
 "scripts": {

kubectl create my-service/database-stateful-set-y
kubectl create my-service/middle-tier.yaml
kubectl create my-service/configs.yaml

 "setup": "./setup.sh",
 ...
 }
}

With this setup, a new developer can simply run npm run setup and

the cluster dependencies will be installed. Obviously, this particular

integration is Node.js/npm specific. In other programming languages, it will

make more sense to integrate with the language-specific tooling. For

example, in Java you might integrate with a Maven pom.xml file instead.

For more generic workflows, recently both Github and Visual Studio Code

have standardized on “devcontainers” which are containers that are

described by a Dockerfile stored in the .devcontainer/ folder in the

repository and when built construct a complete environment for starting

development on that repository.

Enabling Active Development

Having set up the developer workspace with required dependencies, the

next task is to enable them to iterate on their application quickly. The first

prerequisite for this is the ability to build and push a container image. Let’s

assume that you have this already set up; if not, you can read how to do this

in a number of other online resources and books.

After you have built and pushed a container image, the task is to roll it out

to the cluster. Unlike traditional rollouts, in the case of developer iteration,

maintaining availability is really not a concern. Thus, the easiest way to

deploy new code is to simply delete the Deployment object associated with

the previous Deployment and then create a new Deployment pointing to the

newly built image. It is also possible to update an existing Deployment in

place, but this will trigger the rollout logic in the Deployment resource.

Although it is possible to configure a Deployment to roll out code quickly,

doing so introduces a difference between the development environment and

the production environment that can be dangerous or destabilizing. Imagine,

for example, that you accidentally push the development configuration of

the Deployment into production; you will suddenly and accidentally deploy

new versions to production without appropriate testing and delays between

phases of the rollout. Because of this risk and because there is an

alternative, the best practice is to delete and re-create the Deployment.

Just like installing dependencies, it is also a good practice to make a script

for performing this deployment. An example deploy.sh script might look

like the following:

kubectl delete -f ./my-service/deployment.yaml
perl -pi -e 's/${old_version}/${new_version}/' ./
kubectl create -f ./my-service/deployment.yaml

As before, you can integrate this with existing programming language

tooling so that (for example) a developer can simply run npm run

deploy to deploy their new code into the cluster.

As you build this automation it is often useful to integrated it into a

continuous integration and development (CI/CD) tool such as Github

Actions, Azure DevOps or Jenkins. Integration with a CI/CD tool makes it

much easier to enable further automation like automatic deployment on

merging a developers PR.

Enabling Testing and Debugging

After a user has successfully deployed their development version of their

application, they need to test it and, if there are problems, debug any issues

with the application. This can also be a hurdle when developing in

Kubernetes because it is not always clear how to interact with your cluster.

The kubectl command line is a veritable Swiss army knife of tools to

achieve this, from kubectl logs to kubectl exec and kubectl

port-forward , but learning how to use all of the different options and

achieving familiarity with the tool can take a considerable amount of

experience. Furthermore, because the tool runs in the terminal, it often

requires the composition of multiple windows to simultaneously examine

both the source code for the application and the running application itself.

To streamline the testing and debugging experience, Kubernetes tooling is

increasingly being integrated into development environments, for example,

the open source extension for Visual Studio (VS) Code for Kubernetes. The

extension is easily installed for free from the VS Code marketplace. When

installed, it automatically discovers any clusters that you already have in

your kubeconfig file, and it provides a tree-view navigation pane for you to

see the contents of your cluster at a glance.

In addition to being able to see your cluster state at a glance, the integration

allows a developer to use the tools available via kubectl in an intuitive,

discoverable way. From the tree view, if you right-click a Kubernetes pod,

you can immediately use port forwarding to bring a network connection to

the pod directly to the local machine. Likewise, you can access the logs for

the pod or even get a terminal within the running container.

The integration of these commands with prototypical user interface

expectations (e.g., right-click shows a context menu), as well as the

integration of these experiences alongside the code for the application itself,

enable developers with minimal Kubernetes experience to rapidly become

productive in the development cluster.

Of course this VS Code extension isn’t the only integration between

Kubernetes and a devlopment environment; there are several others that you

can install depending on your choice of programming environment and

style (vi , emacs , etc.).

Setting Up a Development Environment Best
Practices

Setting up successful workflows on Kubernetes is key to productivity and

happiness. Following these best practices will help to ensure that developers

are up and running quickly:

Think about developer experience in three phases: onboarding,

developing, and testing. Make sure that the development environment

you build supports all three of these phases.

When building a development cluster, you can choose between one large

cluster and a cluster per developer. There are pros and cons to each, but

generally a single large cluster is a better approach.

When you add users to a cluster, add them with their own identity and

access to their own namespace. Use resource limits to restrict how much

of the cluster they can use.

When managing namespaces, think about how you can reap old, unused

resources. Developers will have bad hygiene about deleting unused

things. Use automation to clean it up for them.

Think about cluster-level services like logs and monitoring that you can

set up for all users. Sometimes, cluster-level dependencies like databases

are also useful to set up on behalf of all users using templates like Helm

charts.

Summary

We’ve reached a place where creating a Kubernetes cluster, especially in the

cloud, is a relatively straightforward exercise, but enabling developers to

productively use such a cluster is significantly less obvious and easy. When

thinking about enabling developers to successfully build applications on

Kubernetes, it’s important to think about the key goals around onboarding,

iterating, testing, and debugging applications. Likewise, it pays to invest in

some basic tooling specific to user onboarding, namespace provisioning,

and cluster services like basic log aggregation. Viewing a development

cluster and your code repositories as an opportunity to standardize and

apply best practices will ensure that you have happy and productive

developers, successfully building code to deploy to your production

Kubernetes clusters.

Chapter 3. Monitoring and Logging in Kubernetes

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

In this chapter, we discuss best practices for monitoring and logging in

Kubernetes. We’ll dive into the details of different monitoring patterns,

important metrics to collect, and building dashboards from these raw

metrics. We then wrap up with examples of implementing monitoring for

your Kubernetes cluster.

Metrics Versus Logs

You first need to understand the difference between log collection and

metrics collection. They are complementary to each other but serve

different purposes.

Metrics

A series of numbers measured over a period of time

Logs

Used for exploratory analysis of a system

An example of where you would need to use both metrics and logging is

when an application is performing poorly. Our first indication of the issue

might be an alert of high latency on the pods hosting the application, but the

metrics might not give a good indication of the issue. We then can look into

our logs to perform an investigation of errors that are being emitted from

the application.

Monitoring Techniques

Black-box monitoring focuses on monitoring from the outside of an

application and is what’s been used traditionally when monitoring systems

for components like CPU, memory, storage, and so on. Black-box

monitoring can still be useful for monitoring at the infrastructure level, but

it lacks insights and context into how the application is operating. For

example, to test whether a cluster is healthy, we might schedule a pod, and

if it’s successful, we know that the scheduler and service discovery are

healthy within our cluster, so we can assume the cluster components are

healthy.

White-box monitoring focuses on the details in the context of the

application state, such as total HTTP requests, number of 500 errors,

latency of requests, and so on. With white-box monitoring, we can begin to

understand the “Why” of our system state. It allows us to ask, “Why did the

disk fill up?” and not just, “The disk filled up.”

Monitoring Patterns

You might look at monitoring and say, “How difficult can this be? We’ve

always monitored our systems.” Yes, some of your typical monitoring

patterns in place today also fit into how you monitor Kubernetes. The

difference is that platforms like Kubernetes are much more dynamic and

transient, and you’ll need to change your thinking about how to monitor

these environments. For example, when monitoring a virtual machine (VM)

you expect that VM to be up 24/7 and all its state preserved. In Kubernetes,

pods can be very dynamic and short-lived, so you need to have monitoring

in place that can handle this dynamic and transient nature.

There are a couple of different monitoring patterns to focus on when

monitoring distributed systems.

The USE method, popularized by Brendan Gregg, focuses on the following:

U—Utilization

S—Saturation

E—Errors

This method is focused on infrastructure monitoring because there are

limitations on using it for application-level monitoring. The USE method is

described as, “For every resource, check utilization, saturation, and error

rates.” This method lets you quickly identify resource constraints and error

rates of your systems. For example, to check the health of the network for

your nodes in the cluster, you will want to monitor the utilization,

saturation, and error rate to be able to easily identify any network

bottlenecks or errors in the network stack. The USE method is a tool in a

larger toolbox and is not the only method you will utilize to monitor your

systems.

Another monitoring approach, called the RED method, was popularized by

Tom Willke. The RED method approach is focused on the following:

R—Rate

E—Errors

D—Duration

The philosophy was taken from Google’s Four Golden Signals:

Latency (how long it takes to serve a request)

Traffic (how much demand is placed on your system)

Errors (rate of requests that are failing)

Saturation (how utilized your service is)

As an example, you could use this method to monitor a frontend service

running in Kubernetes to calculate the following:

How many requests is my frontend service processing?

How many 500 errors are users of the service receiving?

Is the service overutilized by requests?

As you can see from the previous example, this method is more focused on

the experience of the users and their experience with the service.

The USE and RED methods are complementary to each other given that the

USE method focuses on the infrastructure components and the RED method

focuses on monitoring the end-user experience for the application.

Kubernetes Metrics Overview

Now that we know the different monitoring techniques and patterns, let’s

look at what components you should be monitoring in your Kubernetes

cluster. A Kubernetes cluster consists of control-plane components and

worker-node components. The control-plane components consist of the API

Server, etcd, scheduler, and controller manager. The worker nodes consist

of the kubelet, container runtime, kube-proxy, kube-dns, and pods. You

need to monitor all these components to ensure a healthy cluster and

application.

Kubernetes exposes these metrics in a variety of ways, so let’s take a look at

different components that you can use to collect metrics within your cluster.

cAdvisor

Container Advisor, or cAdvisor, is an open source project that collects

resources and metrics for containers running on a node. cAdvisor is built

into the Kubernetes kubelet, which runs on every node in the cluster. It

collects memory and CPU metrics through the Linux control group

(cgroup) tree. If you are not familiar with cgroups, it’s a Linux kernel

feature that allows isolation of resources for CPU, disk I/O, or network I/O.

cAdvisor will also collect disk metrics through statfs, which is built into the

Linux kernel. These are implementation details you don’t really need to

worry about, but you should understand how these metrics are exposed and

the type of information you can collect. You should consider cAdvisor as

the source of truth for all container metrics.

Metrics Server

The Kubernetes metrics server and Metrics Server API are a replacement

for the deprecated Heapster. Heapster had some architectural disadvantages

with how it implemented the data sink, which caused a lot of vendored

solutions in the core Heapster code base. This issue was solved by

implementing a resource and Custom Metrics API as an aggregated API in

Kubernetes. This allows implementations to be switched out without

changing the API.

There are two aspects to understand in the Metrics Server API and metrics

server.

First, the canonical implementation of the Resource Metrics API is the

metrics server. The metrics server gathers resource metrics such as CPU

and memory. It gathers these metrics from the kubelet’s API and then stores

them in memory. Kubernetes uses these resource metrics in the scheduler,

Horizontal Pod Autoscaler (HPA), and Vertical Pod Autoscaler (VPA).

Second, the Custom Metrics API allows monitoring systems to collect

arbitrary metrics. This allows monitoring solutions to build custom adapters

that will allow for extending outside the core resource metrics. For

example, Prometheus built one of the first custom metrics adapters, which

allows you to use the HPA based on a custom metric. This opens up better

scaling based on your use case because now you can bring in metrics like

queue size and scale based on a metric that might be external to Kubernetes.

Now that there is a standardized Metrics API, this opens up many

possibilities to scale outside the plain old CPU and memory metrics.

kube-state-metrics

kube-state-metrics is a Kubernetes add-on that monitors the object stored in

Kubernetes. Where cAdvisor and metrics server are used to provide detailed

metrics on resource usage, kube-state-metrics is focused on identifying

conditions on Kubernetes objects deployed to your cluster.

Following are some questions that kube-state-metrics can answer for you:

Pods

How many pods are deployed to the cluster?

How many pods are in a pending state?

Are there enough resources to serve a pods request?

Deployments

How many pods are in a running state versus a desired state?

How many replicas are available?

What deployments have been updated?

Nodes

What’s the status of my worker nodes?

What are the allottable CPU cores in my cluster?

Are there any nodes that are unschedulable?

Jobs

When did a job start?

When did a job complete?

How many jobs failed?

As of this writing, there are 22 object types that kube-state-metrics tracks.

These are always expanding, and you can find the documentation in the

Github repository.

What Metrics Do I Monitor?

The easy answer is “Everything,” but if you try to monitor too much, you

can create too much noise that filters out the real signals into which you

need to have insight. When we think about monitoring in Kubernetes, we

want to take a layered approach that takes into account the following:

Physical or virtual nodes

Cluster components

Cluster add-ons

End-user applications

Using this layered approach to monitoring allows you to more easily

identify the correct signals in your monitoring system. It allows you to

approach issues with a more targeted approach. For example, if you have

pods going into a pending state, you can start with resource utilization of

the nodes, and if all is OK, you can target cluster-level components.

Following are metrics you would want to target in your system:

Nodes

CPU utilization

Memory utilization

Network utilization

Disk utilization

Cluster components

etcd latency

Cluster add-ons

Cluster Autoscaler

Ingress controller

Application

Container memory utilization and saturation

Container CPU utilization

Container network utilization and error rate

Application framework-specific metrics

Monitoring Tools

There are many monitoring tools that can integrate with Kubernetes, and

more arriving every day, building on their feature set to have better

integration with Kubernetes. Following are a few popular tools that

integrate with Kubernetes:

Prometheus

Prometheus is an open source systems monitoring and alerting toolkit

originally built at SoundCloud. Since its inception in 2012, many

companies and organizations have adopted Prometheus, and the project

has a very active developer and user community. It is now a standalone

open source project and maintained independent of any company. To

emphasize this, and to clarify the project’s governance structure,

Prometheus joined the Cloud Native Computing Foundation (CNCF) in

2016 as the second hosted project, after Kubernetes.

InfluxDB

InfluxDB is a time-series database designed to handle high write and

query loads. It is an integral component of the TICK (Telegraf,

InfluxDB, Chronograf, and Kapacitor) stack. InfluxDB is meant to be

used as a backing store for any use case involving large amounts of

timestamped data, including DevOps monitoring, application metrics,

IoT sensor data, and real-time analytics.

Datadog

Datadog provides a monitoring service for cloud-scale applications,

providing monitoring of servers, databases, tools, and services through a

SaaS-based data analytics platform.

Sysdig

Sysdig Monitor is a commercial tool that provides Docker monitoring

and Kubernetes monitoring for container-native apps. Sysdig also allows

you to collect, correlate, and query Prometheus metrics with direct

Kubernetes integration.

Cloud provider tools

GCP Stackdriver

Stackdriver Kubernetes Engine Monitoring is designed to monitor

Google Kubernetes Engine (GKE) clusters. It manages monitoring

and logging services together and features an interface that provides a

dashboard customized for GKE clusters. Stackdriver Monitoring

provides visibility into the performance, uptime, and overall health of

cloud-powered applications. It collects metrics, events, and metadata

from Google Cloud Platform (GCP), Amazon Web Services (AWS),

hosted uptime probes, and application instrumentation.

Microsoft Azure Monitor for containers

Azure Monitor for containers is a feature designed to monitor the

performance of container workloads deployed to either Azure

Container Instances or managed Kubernetes clusters hosted on Azure

Kubernetes Service. Monitoring your containers is critical, especially

when you’re running a production cluster, at scale, with multiple

applications. Azure Monitor for containers gives you performance

visibility by collecting memory and processor metrics from

controllers, nodes, and containers that are available in Kubernetes

through the Metrics API. Container logs are also collected. After you

enable monitoring from Kubernetes clusters, metrics and logs are

automatically collected for you through a containerized version of the

Log Analytics agent for Linux.

AWS Container Insights

If you use Amazon Elastic Container Service (ECS), Amazon Elastic

Kubernetes Service, or other Kubernetes platforms on Amazon EC2,

you can use CloudWatch Container Insights to collect, aggregate, and

summarize metrics and logs from your containerized applications and

microservices. The metrics include utilization for resources such as

CPU, memory, disk, and network. Container Insights also provides

diagnostic information, such as container restart failures, to help you

isolate issues and resolve them quickly.

One important aspect when looking at implementing a tool to monitor

metrics is to look at how the metrics are stored. Tools that provide a time-

series database with key/value pairs will give you a higher degree of

attributes for the metric.

TIP

Always evaluate monitoring tools you already have, because taking on a new

monitoring tool has a learning curve and a cost due to the operational implementation

of the tool. Many of the monitoring tools now have integration into Kubernetes, so

evaluate which ones you have today and whether they will meet your requirements.

Monitoring Kubernetes Using Prometheus

In this section we focus on monitoring metrics with Prometheus, which

provides good integrations with Kubernetes labeling, service discovery, and

metadata. The high-level concepts we implement throughout the chapter

will also apply to other monitoring systems.

Prometheus is an open source project that is hosted by the CNCF. It was

originally developed at SoundCloud, and a lot of its concepts are based on

Google’s internal monitoring system, BorgMon. It implements a

multidimensional data model with keypairs that work much like how the

Kubernetes labeling system works. Prometheus exposes metrics in a

human-readable format, as in the following example:

To collect metrics, Prometheus uses a pull model in which it scrapes a

metrics endpoint to collect and ingest the metrics into the Prometheus

server. Systems like Kubernetes already expose their metrics in a

Prometheus format, making it simple to collect metrics. Many other

Kubernetes ecosystem projects (NGINX, Traefik, Istio, LinkerD, etc.) also

expose their metrics in a Prometheus format. Prometheus also can use

HELP node_cpu_seconds_total Seconds the CPU is
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="0",mode="idle"} 5144
node_cpu_seconds_total{cpu="0",mode="iowait"} 117

exporters, which allow you to take emitted metrics from your service and

translate them to Prometheus-formatted metrics.

Prometheus has a very simplified architecure, as depicted in Figure 3-1.

Figure 3-1. Prometheus architecture

TIP

You can install Prometheus within the cluster or outside the cluster. It’s a good practice

to monitor your cluster from a “utility cluster” to avoid a production issue also

affecting your monitoring system. There are tools like Thanos that provide high

availability for Prometheus and allow you to export metrics into an external storage

system.

A deep dive into the Prometheus architecture is beyond the scope of this

book, and you should refer to another one of the dedicated books on this

topic. Prometheus: Up & Running (O’Reilly) is a good in-depth book to get

you started.

So, let’s dive in and get Prometheus set up on our Kubernetes cluster. There

are many different ways to do this, and the deployment will depend on your

specific implementation. In this chapter we install the Prometheus Operator:

Prometheus Server

Pulls and stores metrics being collected from systems.

Prometheus Operator

Makes the Prometheus configuration Kubernetes native, and manages

and operates Prometheus and Alertmanager clusters. Allows you to

create, destroy, and configure Prometheus resources through native

Kubernetes resource definitions.

Node Exporter

Exports host metrics from Kubernetes nodes in the cluster.

kube-state-metrics

Collects Kubernetes-specific metrics.

Alertmanager

Allows you to configure and forward alerts to external systems.

Grafana

Provides visualization on dashboard capabilities for Prometheus.

First, we’ll start be getting minkube setup to deploy prometheus to. We are

using Mac’s so we’ll use brew to install minikube. You can also install

minikube from the minikube website.

brew install minikube

Now we’ll install kube-prometheus-stack (formerly Prometheus Operator)

and prepare our cluster to start monitoring the Kubernetes API server for

changes:

Create a namespace for monitoring:

kubectl create ns monitoring

Add the prometheus-community Helm chart repository:

Add the Helm Stable chart repository:

Let’s now update the chart repository:

helm repo update

Now we’ll install the kube-prometheus-stack chart:

Let’s check to ensure that all the pods are running:

kubectl get pods -n monitoring

If installed correctly you should see the following pods:

kubectl get pods -n monitoring

helm repo add prometheus-community https://promet

helm repo add stable https://charts.helm.sh/stabl

helm install --namespace monitoring prometheus pr

Now we’ll create a tunnel to the Grafana instance that is included with

kube-prometheus-stack. This will allow us to connect to Grafana from our

local machine.

This creates a tunnel to our localhost on port 3000. Now, we can open a

web browser and connect to Grafana on http://127.0.0.1:3000.

We talked earlier in the chapter about employing the USE method, so let’s

gather some node metrics on CPU utilization and saturation. Prometheus-

kube-stack provides visualizations for these common USE method metrics

we want to track. The great thing about the prometheus-kube-stack you

installed is that it comes withsome prebuilt Grafana dashboards that you can

use.

Now we’ll create a tunnel to the Grafana instance that is included with

kube-prometheus-stack. This will allow us to connect to Grafana from our

local machine.

NAME
alertmanager-prometheus-kube-prometheus-alertmana
prometheus-grafana-6f7cf9b968-xtnzj
prometheus-kube-prometheus-operator-7bdb94567b-kt
prometheus-kube-state-metrics-6bdd65d76-s5r5j
prometheus-prometheus-kube-prometheus-prometheus-
prometheus-prometheus-node-exporter-dgrlf

kubectl port-forward -n monitoring svc/prometheus

Now, point your web browser at http://localhost:3000 and log in using the

following credentials:

Username: admin

Password: prom-operator

Under the Grafana dashboards you’ll find a dashboard called Kubernetes /

USE Method / Cluster. This dashboard gives you a good overview of the

utilization and saturation of the Kubernetes cluster, which is at the heart of

the USE method. Figure 3-2 presents an example of the dashboard.

Figure 3-2. A Grafana dashboard

Go ahead and take some time to explore the different dashboards and

metrics that you can visualize in Grafana.

TIP

Avoid creating too many dashboards (aka “The Wall of Graphs”) because this can be

difficult for engineers to reason with in troubleshooting situations. You might think

having more information in a dashboard means better monitoring, but the majority of

the time it causes more confusion for a user looking at the dashboard. Focus your

dashboard design on outcomes and time to resolution.

Logging Overview

Up to this point, we have discussed a lot about metrics and Kubernetes, but

to get the full picture of your environment, you also need to collect and

centralize logs from the Kubernetes cluster and the applications deployed to

your cluster.

With logging, it might be easy to say, “Let’s just log everything,” but this

can cause two issues:

There is too much noise to find issues quickly.

Logs can consume a lot of resources and come with a high cost.

There is no clear-cut answer to what exactly you should log because debug

logs become a necessary evil. Over time you’ll start to understand your

environment better and learn what noise you can tune out from the logging

system. Also, to address the ever-increasing amount of logs stored, you will

need to implement a retention and archival policy. From an end-user

experience, having somewhere between 30 and 45 days worth of historical

logs is a good fit. This allows for investigation of problems that manifest

over a longer period of time, but also reduces the amount of resources

needed to store logs. If you require longer-term storage for compliance

reasons, you’ll want to archive the logs to more cost-effective resources.

In a Kubernetes cluster, there are multiple components to log. Following is

a list of components from which you should be collecting metrics:

Node logs

Kubernetes control-plane logs

API server

Controller manager

Scheduler

Kubernetes audit logs

Application container logs

With node logs, you want to collect events that happen to essential node

services. For example, you will want to collect logs from the Docker

daemon running on the worker nodes. A healthy Docker daemon is

essential for running containers on the worker node. Collecting these logs

will help you diagnose any issues that you might run into with the Docker

daemon, and it will give you information into any underlying issues with

the daemon. There are also other essential services that you will want to log

from the underlying node.

The Kubernetes control plane consists of several components from which

you’ll need to collect logs to give you more insight into underlying issues

within it. The Kubernetes control plane is core to a healthy cluster, and

you’ll want to aggregate the logs that it stores on the host in /var/log/kube-

APIserver.log, /var/log/kube-scheduler.log, and /var/log/kube-controller-

manager.log. The controller manager is responsible for creating objects

defined by the end user. As an example, as a user you create a Kubernetes

service with type LoadBalancer and it just sits in a pending state; the

Kubernetes events might not give all the details to diagnose the issue. If you

collect the logs in a centralized system, it will give you more detail into the

underlying issue and a quicker way to investigate the issue.

You can think of Kubernetes audit logs as security monitoring because they

give you insight into who did what within the system. These logs can be

very noisy, so you’ll want to tune them for your environment. In many

instances these logs can cause a huge spike in your logging system when

first initialized, so make sure that you follow the Kubernetes documentation

guidance on audit log monitoring.

Application container logs give you insight into the actual logs your

application is emitting. You can forward these logs to a central repository in

multiple ways. The first and recommended way is to send all application

logs to STDOUT because this gives you a uniform way of application

logging, and a monitoring daemon set can gather the logs directly from the

Docker daemon. The other way is to use a sidecar pattern and run a log

forwarding container next to the application container in a Kubernetes pod.

You might need to use this pattern if your application logs to the filesystem.

NOTE

There are many options and configurations for managing Kubernetes audit logs. These

audit logs can be very noisy and it can be expensive to log all actions. You should

consider looking at the audit logging documentation, so that you can fine-tune these

logs for your environment.

Tools for Logging

Like collecting metrics there are numerous tools to collect logs from

Kubernetes and applications running in the cluster. You might already have

tooling for this, but be aware of how the tool implements logging. The tool

should have the capability to run as a Kubernetes DaemonSet and also have

a solution to run as a sidecar for applications that don’t send logs to

STDOUT. Utilizing an existing tool can be advantageous because you will

already have a lot of operational knowledge of the tool.

Some of the more popular tools with Kubernetes integration are:

Loki

Elastic Stack

Datadog

Sumo Logic

Sysdig

Cloud provider services (GCP Stackdriver, Azure Monitor for

containers, and Amazon CloudWatch)

When looking for a tool to centralize logs, hosted solutions can provide a

lot of value because they offload a lot of the operational cost. Hosting your

own logging solution seems great on day N, but as the environment grows,

it can be very time consuming to maintain the solution.

Logging by Using a Loki-Stack

For the purposes of this book, we use an Loki Stack with prom-tail for

logging for our cluster. Implementing an Loki Stack can be a good way to

get started, but at some point you’ll probably ask yourself, “Is it really

worth managing my own logging platform?” Typically it’s not worth the

effort because self-hosted logging solutions are great on day one, but they

become overly complex by day 365. Self-hosted logging solutions become

more operationally complex as your environment scales. There is no one

correct answer, so evaluate whether your business requirements need you to

host your own solution. There is also a hosted Loki solution (provided by

Grafana), so you can always move pretty easily if you choose not to host it

yourself.

We will use the following for the logging stack:

Loki

prom-tail

Grafana (visualization tool to search, view, and interact with logs stored

in Loki)

Deploy Loki-Stack with Helm to your Kubernetes cluster:

Add Loki-Stack Helm repo

Update Helm rep:

helm repo update

helm repo add grafana https://grafana.github.io/h

helm upgrade --install loki --namespace=monitorin

This deploys Loki with prom-tail, which will allow us to forward logs to

Loki and visualize the logs using Grafana

You should see the following pods deployed to your cluster:

kubectl get pods -n monitoring

After all pods are “Running,” let’s go ahead and connect to Grafana through

port forwarding to our localhost:

Now, point your web browser at http://localhost:3000 and log in using the

following credentials:

Username: admin

Password: prom-operator

Under the Grafana configuration you’ll find datasources. We’ll then add

Loki as a Data Source :

NAME
loki-0
loki-promtail-x7nw8

kubectl port-forward -n monitoring svc/prometheus

Figure 3-3. The Grafana datasource

We will then add a new data sorce and add Loki as the data source

Figure 3-4. Loki datasource

In the Loki settings page, fill in the URL with http://loki:3100 and then

click Save & Test button.

Figure 3-5. Loki configuration

In Grafana, you can perform ad hoc queries on the logs, and you can build

out dashboards to give you an overview of the environment.

To explore the logs that the Loki stack has collected we can use the Explore

function in Grafana. This will allow us to run a query against the logs that

have been collected.

For the label filter you will need the following filter:

namespace = kube-system

Figure 3-6. Explore Loki logs

Go ahead and take some time to explore the different logs that you can

visualize in from Loki and Grafana.

Alerting

Alerting is a double-edged sword, and you need to strike a balance on what

you alert on versus what should just be monitored. Alerting on too much

causes alert fatigue, and important events will be lost in all the noise. An

example would be generating an alert any time a pod fails. You might be

asking, “Why wouldn’t I want to monitor for a pod failure?” Well, the

beauty of Kubernetes is that it provides features to automatically check the

health of a container and restart the container automatically. You really

want to focus alerting on events that affect your Service-Level Objectives

(SLOs). SLOs are specific measurable characteristics such as availability,

throughput, frequency, and response time that you agree upon with the end

user of your service. Setting SLOs sets expectations with your end users

and provides clarity on how the system should behave. Without an SLO,

users can form their opinion, which might be an unrealistic expectation of

the service. Alerting in a system like Kubernetes needs an entirely new

approach from what we are typically accustomed to and needs to focus on

how the end user is experiencing the service. For example, if your SLO for

a frontend service is a 20-ms response time and you are seeing higher

latency than average, you want to be alerted on the problem.

You need to decide what alerts are good and require intervention. In typical

monitoring, you might be accustomed to alerting on high CPU usage,

memory usage, or processes not responding. These might seem like good

alerts, but probably don’t indicate an issue that someone needs to take

immediate action on and requires notifying an on-call engineer. An alert to

an on-call engineer should be an issue that needs immediate human

attention and is affecting the UX of the application. If you have ever

experienced a “That issue resolved itself” scenario, then that is a good

indication that the alert did not need to contact an on-call engineer.

One way to handle alerts that don’t need immediate action is to focus on

automating the remediation of the cause. For example, when a disk fills up,

you could automate the deletion of logs to free up space on the disk. Also,

utilizing Kubernetes liveness probes in your app deployment can help

autoremediate issues with a process that is not responding in the

application.

When building alerts, you also need to consider alert thresholds; if you set

thresholds too short, then you can get a lot of false positives with your

alerts. It’s generally recommended to set a threshold of at least five minutes

to help eliminate false positives. Coming up with standard thresholds can

help define a standard and avoid micromanaging many different thresholds.

For example, you might want to follow a specific pattern of 5 minutes, 10

minutes, 30 minutes, 1 hour, and so on.

When building notifications for alerts you want to ensure that you provide

relevant information in the notification, for example, providing a link to a

“playbook” that gives troubleshooting or other helpful information on

resolving the issue. You should also include information on the datacenter,

region, app owner, and affected system in notifications. Providing all this

information will allow engineers to quickly formalize a theory around the

issue.

You also need to build notification channels to route alerts that are fired.

When thinking about “Who do I notify when an alert is triggered?” you

should ensure that notifications are not just sent to a distribution list or team

emails. What tends to happen if alerts are sent to larger groups is that they

end up getting filtered out because users see these as noise. You should

route notifications to the user who is going to take responsibility for the

issue.

With alerting, you’ll never get it perfect on day one, and we could argue it

might never be perfect. You just want to make sure that you incrementally

improve on alerting to preclude alert fatigue, which can cause many issues

with staff burnout and your systems.

NOTE

For further insight on how to approach alerting on and managing systems, read “My

Philosophy on Alerting” by Rob Ewaschuk, which is based on Rob’s observations as a

site reliability engineer (SRE) at Google.

Best Practices for Monitoring, Logging, and
Alerting

Following are the best practices that you should adopt regarding

monitoring, logging, and alerting.

Monitoring

Monitor nodes and all Kubernetes components for utilization, saturation,

and error rates, and monitor applications for rate, errors, and duration.

Use black-box monitoring to monitor for symptoms and not predictive

health of a system.

Use white-box monitoring to inspect the system and its internals with

instrumentation.

Implement time-series-based metrics to gain high-precision metrics that

also allow you to gain insight within the behavior of your application.

Utilize monitoring systems like Prometheus that provide key labeling for

high dimensionality; this will give a better signal to symptoms of an

impacting issue.

Use average metrics to visualize subtotals and metrics based on factual

data. Utilize sum metrics to visualize the distribution across a specific

metric.

Logging

You should use logging in combination with metrics monitoring to get

the full picture of how your environment is operating.

Be cautious of storing logs for more than 30 to 45 days and, if needed,

use cheaper resources for long-term archiving.

Limit usage of log forwarders in a sidecar pattern, as they will utilize a

lot more resources. Opt for using a DaemonSet for the log forwarder and

sending logs to STDOUT.

Alerting

Be cautious of alert fatigue because it can lead to bad behaviors in

people and processes.

Always look at incrementally improving upon alerting and accept that it

will not always be perfect.

Alert for symptoms that affect your SLO and customers and not for

transient issues that don’t need immediate human attention.

Summary

In this chapter we discussed the patterns, techniques, and tools that can be

used for monitoring our systems with metric and log collection. The most

important piece to take away from this chapter is that you need to rethink

how you perform monitoring and do it from the outset. Too many times we

see this implemented after the fact, and it can get you into a very bad place

in understanding your system. Monitoring is all about having better insight

into a system and being able to provide better resiliency, which in turn

provides a better end-user experience for your application. Monitoring

distributed applications and distributed systems like Kubernetes requires a

lot of work, so you must be ready for it at the beginning of your journey.

Chapter 4. Configuration, Secrets, and RBAC

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

The composable nature of containers allows us as operators to introduce

configuration data into a container at runtime. This makes it possible for us

to decouple an application’s function from the environment it runs in. By

means of the conventions allowed in the container runtime to pass through

either environment variables or mount external volumes into a container at

runtime, you can effectively change the configuration of the application

upon its instantiation. As a developer, it is important to take into

consideration the dynamic nature of this behavior and allow for the use of

environment variables or the reading of configuration data from a specific

path available to the application runtime user.

When moving sensitive data such as secrets into a native Kubernetes API

object, it is important to understand how Kubernetes secures access to the

API. The most commonly implemented security method in use in

Kubernetes is Role-Based Access Control (RBAC) to implement a fine-

grained permission structure around actions that can be taken against the

API by specific users or groups. This chapter covers some of the best

practices regarding RBAC and also provides a small primer.

Configuration Through ConfigMaps and Secrets

Kubernetes allows you to natively provide configuration information to our

applications through ConfigMaps or secret resources. The main

differentiator between the two is the way a pod stores the receiving

information and how the data is stored in the etcd data store.

ConfigMaps

It is very common to have applications consume configuration information

through some type of mechanism such as command-line arguments,

environment variables, or files that are available to the system. Containers

allow the developer to decouple this configuration information from the

application, which allows for true application portability. The ConfigMap

API allows for the injection of supplied configuration information.

ConfigMaps are very adaptable to the application’s requirements and can

provide key/value pairs or complex bulk data such as JSON, XML, or

proprietary configuration data.

The ConfigMaps not only provide configuration information for pods, but

can also provide information to be consumed for more complex system

services such as controllers, CRDs, operators, and so on. As mentioned

earlier, the ConfigMap API is meant more for string data that is not really

sensitive data. If your application requires more sensitive data, the Secrets

API is more appropriate.

For your application to use the ConfigMap data, it can be injected as either

a volume mounted into the pod or as environment variables.

Secrets

Many of the attributes and reasons for which you would want to use a

ConfigMap apply to secrets. The main differences lie in the fundamental

nature of a Secret. Secret data should be stored and handled in a way that

can be easily hidden and possibly encrypted at rest if the environment is

configured as such. The Secret data is represented as base64-encoded

information, and it is critical to understand that this is not encrypted. As

soon as the secret is injected into the pod, the pod itself can see the secret

data in plain text.

Secret data is meant to be small amounts of data, limited by default in

Kubernetes to 1 MB in size, for the base64-encoded data, so ensure that the

actual data is approximately 750 KB because of the overhead of the

encoding. There are three types of secrets in Kubernetes:

generic
This is typically just regular key/value pairs that are created from a file, a

directory, or from string literals using the --from-literal=

parameter, as follows:

docker-registry
This is used by the kubelet when passed in a pod template if there is an

imagePullsecret to provide the credentials needed to authenticate

to a private Docker registry:

tls
This creates a Transport Layer Security (TLS) secret from a valid

public/private key pair. As long as the cert is in a valid PEM format, the

key pair will be encoded as a secret and can be passed to the pod to use

for SSL/TLS needs:

kubectl create secret generic mysecret --from-l

kubectl create secret docker-registry registryK

k b tl t t tl tl k / th

Secrets are also mounted into tmpfs only on the nodes that have a pod that

requires the secret and are deleted when the pod that needs it is gone. This

prevents any secrets from being left behind on the disk of the node.

Although this might seem secure, it is important to know that by default,

secrets are stored in the etcd datastore of Kubernetes in plain text, and it is

important that the system administrators or cloud service provider take

efforts to ensure that the security of the etcd environment, including mTLS

between the etcd nodes and enabling encryption at rest for the etcd data.

More recent versions of Kubernetes use etcd3 and have the ability to enable

etcd native encryption; however, this is a manual process that must be

configured in the API server configuration by specifying a provider and the

proper key media to properly encrypt secret data held in etcd. As of

Kubernetes v1.10 (it has been promoted to beta in v1.12), we have the KMS

provider, which promises to provide a more secure key process by using

third-party KMS systems to hold the proper keys.

Common Best Practices for the ConfigMap and
Secrets APIs

The majority of issues that arise from the use of a ConfigMap or secret are

incorrect assumptions on how changes are handled when the data held by

the object is updated. By understanding the rules of the road and adding a

kubectl create secret tls www-tls --key=./path_

few tricks to make it easier to abide by those rules, you can steer away from

trouble:

To support dynamic changes to your application without having to

redeploy new versions of the pods, mount your ConfigMaps/Secrets as a

volume and configure your application with a file watcher to detect the

changed file data and reconfigure itself as needed. The following code

shows a Deployment that mounts a ConfigMap and a Secret file as a

volume:

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-http-config
 namespace: myapp-prod
data:
 config: |
 http {
 server {
 location / {
 root /data/html;
 }

 location /images/ {
 root /data;
 }
 }
 }

apiVersion: v1
kind: Secret
metadata:
 name: myapp-api-key
type: Opaque
data:
 myapikey: YWRtd5thSaW4=

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mywebapp
 namespace: myapp-prod
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 8080
 volumeMounts:
 - mountPath: /etc/nginx
 name: nginx-config
 - mountPath: /usr/var/nginx/html/keys
 name: api-key
 volumes:
 - name: nginx-config
 configMap:
 name: nginx-http-config
 items:
 - key: config
 path: nginx.conf
 - name: api-key
 secret:

 name: myapp-api-key
 secretname: myapikey

NOTE

There are a couple of things to consider when using volumeMounts . First, as soon

as the ConfigMap/Secret is created, add it as a volume in your pod’s specification.

Then mount that volume into the container’s filesystem. Each property name in the

ConfigMap/Secret will become a new file in the mounted directory, and the contents of

each file will be the value specified in the ConfigMap/Secret. Second, avoid mounting

ConfigMaps/Secrets using the volumeMounts.subPath property. This will

prevent the data from being dynamically updated in the volume if you update a

ConfigMap/Secret with new data.

ConfigMap/Secrets must exist in the namespace for the pods that will

consume them prior to the pod being deployed. The optional flag can be

used to prevent the pods from not starting if the ConfigMap/Secret is not

present.

Use an admission controller to ensure specific configuration data or to

prevent deployments that do not have specific configuration values set.

An example would be if you require all production Java workloads to

have certain JVM properties set in production environments.

If you’re using Helm to release applications into your environment, you

can use a life cycle hook to ensure the ConfigMap/Secret template is

deployed before the Deployment is applied.

Some applications require their configuration to be applied as a single

file such as a JSON or YAML file. ConfigMap/Secrets allows an entire

block of raw data by using the | symbol, as demonstrated here:

apiVersion: v1
kind: ConfigMap
metadata:
 name: config-file
data:
 config: |
 {
 "iotDevice": {
 "name": "remoteValve",
 "username": "CC:22:3D:E3:CE:30",
 "port": 51826,
 "pin": "031-45-154"
 }
 }

If the application uses system environment variables to determine its

configuration, you can use the injection of the ConfigMap data to create

an environment variable mapping into the pod. There are two main ways

to do this: mounting every key/value pair in the ConfigMap as a series of

environment variables into the pod using envFrom and then using

configMapRef or secretRef , or assigning individual keys with

their respective values using the configMapKeyRef or

secretKeyRef .

If you’re using the configMapKeyRef or secretKeyRef

method, be aware that if the actual key does not exist, this will prevent

the pod from starting.

If you’re loading all of the key/value pairs from the ConfigMap/Secret

into the pod using envFrom , any keys that are considered invalid

environment values will be skipped; however, the pod will be allowed to

start. The event for the pod will have an event with reason

InvalidVariableNames and the appropriate message about which

key was skipped. The following code is an example of a Deployment

with a ConfigMap and Secret reference as an environment variable:

apiVersion: v1
kind: ConfigMap
metadata:
 name: mysql-config
data:
 mysqldb: myappdb1
 user: mysqluser1

apiVersion: v1
kind: Secret
metadata:
 name: mysql-secret
type: Opaque
data:
 rootpassword: YWRtJasdhaW4=
 userpassword: MWYyZDigKJGUyfgKJBmU2N2Rm

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-db-deploy
spec:
 selector:
 matchLabels:
 app: myapp-db
 template:
 metadata:
 labels:
 app: myapp-db
 spec:
 containers:
 - name: myapp-db-instance
 image: mysql
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 3306
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: rootpassword
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-secret
 key: userpassword
 - name: MYSQL_USER
 valueFrom:

 configMapKeyRef:
 name: mysql-config
 key: user
 - name: MYSQL_DB
 valueFrom:
 configMapKeyRef:
 name: mysql-config
 key: mysqldb

If there is a need to pass command-line arguments to your containers,

environment variable data can be sourced using $(ENV_KEY)

interpolation syntax:

When consuming ConfigMap/Secret data as environment variables, it is

very important to understand that updates to the data in the

[...]
spec:
 containers:
 - name: load-gen
 image: busybox
 command: ["/bin/sh"]
args: ["-c", "while true; do curl $(WEB_UI_URL);
 ports:
 - containerPort: 8080
 env:
 - name: WEB_UI_URL
 valueFrom:
 configMapKeyRef:
 name: load-gen-config
 key: url

ConfigMap/Secret will not update in the pod and will require a pod

restart either through deleting the pods and letting the ReplicaSet

controller create a new pod, or triggering a Deployment update, which

will follow the proper application update strategy as declared in the

Deployment specification.

It is easier to assume that all changes to a ConfigMap/Secret require an

update to the entire deployment; this ensures that even if you’re using

environment variables or volumes, the code will take the new

configuration data. To make this easier, you can use a CI/CD pipeline to

update the name property of the ConfigMap/Secret and also update the

reference in the deployment, which will then trigger an update through

normal Kubernetes update strategies of your deployment. We will

explore this in the following example code. If you’re using Helm to

release your application code into Kubernetes, you can take advantage of

an annotation in the Deployment template to check the sha256

checksum of the ConfigMap/Secret. This triggers Helm to update the

Deployment using the helm upgrade command when the data

within a ConfigMap/Secret is changed:

apiVersion: apps/v1
kind: Deployment
[...]
spec:
 template:
 metadata:
 annotations:
 checksum/config: {{ include (print $.Temp

Best practices specific to secrets

Because of the nature of sensitive data of the Secrets API, there are

naturally more specific best practices, which are mainly around the security

of the data itself:

If your workload does not need to access the Kubernete API directly it is

good practice to block the automounting of the API Credential for the

Service Account (Default or operator created). This will reduce the API

calls to the API server as a watch is used to updated the API credential

data upon the credential expiring. In very large clusters or clusters with

alot of pods this will reduce the calls to the Control Plane which can

casue performance degredation. This can be defined on the

ServiceAccount or the Pod Spec itslef:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: app1-svcacct
automountServiceAccountToken: false
[...]

apiVersion: v1
kind: Pod
metadata:

[...]

 name: app1-pod
spec:
 serviceAccountName: app1-svcacct
 automountServiceAccountToken: false
[...]

The original specification for the Secrets API outlined a pluggable

architecture to allow the actual storage of the secret to be configurable

based on requirements. Solutions such as HashiCorp Vault, Aqua

Security, Twistlock, AWS Secrets Manager, Google Cloud KMS, or

Azure Key Vault allow the use of external storage systems for secret data

using a higher level of encryption and auditability than what is offered

natively in Kubernetes. The Linux Foundation project ExternalSecrets

Operator provides a native way to provide this functionality.

Assign an imagePullSecrets to a serviceaccount that the

pod will use to automatically mount the secret without having to declare

it in the pod.spec . You can patch the default service account for the

namespace of your application and add the imagePullSecrets to it

directly. This automatically adds it to all pods in the namespace:

Create the docker-registry secret first
kubectl create secret docker-registry registryKey
myreg.azurecr.io --docker-username myreg --docker
--docker-email ignore@dummy.com

patch the default serviceaccount for the namespac
kubectl patch serviceaccount default -p '{"imageP
"registryKey"}]}'

Use CI/CD capabilities to get secrets from a secure vault or encrypted

store with a Hardware Security Module (HSM) during the release

pipeline. This allows for separation of duties. Security management

teams can create and encrypt the secrets, and developers just need to

reference the names of the secret expected. This is also the preferred

DevOps process to ensure a more dynamic application delivery process.

RBAC

When working in large, distributed environments, it is very common that

some type of security mechanism is needed to prevent unauthorized access

to critical systems. There are numerous strategies around how to limit

access to resources in computer systems, but the majority all go through the

same phases. Using an analogy of a common experience such as flying to a

foreign country can help explain the processes that happen in systems like

Kubernetes. We can use the common travler’s experience with a passport,

travel visa, and customs or border guards to show the process:

1. Passport (subject authentication): Usually you need to have a passport

issued by some government agency that will offer some sort of

verification as to who you are. This would be equivalent to a user

account in Kubernetes. Kubernetes relies on an external authority to

authenticate users; however, service accounts are a type of account that

is managed directly by Kubernetes.

2. Visa or travel policy (authorization): Countries will have formal

agreements to accept travelers holding passports from other countries

through formal short-term agreements such as visas. The visas will also

outline what the visitor may do and for how long they may stay in the

visiting country, depending on the specific type of visa. This would be

equivalent to authorization in Kubernetes. Kubernetes has different

authorization methods, but the most used is RBAC. This allows very

granular access to different API capabilities.

3. Border patrol or customs (admission control): When entering a foreign

country, usually there is a body of authority that will check the requisite

documents, including the passport and visa, and, in many cases, inspect

what is being brought into the country to ensure it abides by that

country’s laws. In Kubernetes this is equivalent to admission controllers.

Admission controllers can allow, deny, or change the requests into the

API based upon rules and policies that are defined. Kubernetes has many

built-in admission controllers such as PodSecurity, ResourceQuota, and

ServiceAccount controllers. Kubernetes also allows for dynamic

controllers through the use of validating or mutating admission

controllers.

The focus of this section is the least understood and the most avoided of

these three areas: RBAC. Before we outline some of the best practices, we

first must present a primer on Kubernetes RBAC.

RBAC Primer

The RBAC process in Kubernetes has three main components that need to

be defined: the subject, the rule, and the role binding.

Subjects

The first component is the subject, the item that is actually being checked

for access. The subject is usually a user, a service account, or a group. As

mentioned earlier, users as well as groups are handled outside of

Kubernetes by the authorization module used. We can categorize these as

basic authentication, x.509 client certificates, or bearer tokens. The most

common implementations use either x.509 client certificates or some type

of bearer token using something like an OpenID Connect system such as

Azure Active Directory (Azure AD), Salesforce, or Google.

NOTE

Service accounts in Kubernetes are different than user accounts in that they are

namespace bound, internally stored in Kubernetes; they are meant to represent

processes, not people, and are managed by native Kubernetes controllers.

Rules

Simply stated, this is the actual list of actions that can be performed on a

specific object (resource) or a group of objects in the API. Verbs align to

typical CRUD (Create, Read, Update, and Delete) type operations but with

some added capabilities in Kubernetes such as watch , list , and

exec . The objects align to the different API components and are grouped

together in categories. Pod objects, as an example, are part of the core API

and can be referenced with apiGroup: "" whereas deployments are

under the app API Group. This is the real power of the RBAC process and

probably what intimidates and confuses people when creating proper RBAC

controls.

Roles

Roles allow the definition of scope of the rules defined. Kubernetes has two

types of roles, role and clusterRole , the difference being that

role is specific to a namespace, and clusterRole is a cluster-wide

role across all namespaces. An example Role definition with namespace

scope would be as follows:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: default
 name: pod-viewer
rules:
- apiGroups: [""] # "" indicates the core API gro
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

RoleBindings

The RoleBinding allows a mapping of a subject like a user or group to a

specific role. Bindings also have two modes: roleBinding , which is

specific to a namespace, and clusterRoleBinding , which is across

the entire cluster. Here’s an example RoleBinding with namespace scope:

RBAC Best Practices

RBAC is a critical component of running a secure, dependable, and stable

Kubernetes environment. The concepts underlying RBAC can be complex;

however, adhering to a few best practices can ease some of the major

stumbling blocks:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: noc-helpdesk-view
 namespace: default
subjects:
- kind: User
 name: helpdeskuser@example.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role #this must be Role or ClusterRole
 name: pod-viewer # this must match the name of
 apiGroup: rbac.authorization.k8s.io

Applications that are developed to run in Kubernetes rarely ever need an

RBAC role and role binding associated to it. Only if the application code

actually interacts directly with the Kubernetes API directly does the

application require RBAC configuration.

If the application does need to directly access the Kubernetes API to

perhaps change configuration depending on endpoints being added to a

service, or if it needs to list all of the pods in a specific namespace, the

best practice is to create a new service account that is then specified in

the pod specification. Then, create a role that has the least amount of

privileges needed to accomplish its goal.

Use an OpenID Connect service that enables identity management and,

if needed, two-factor authentication. This will allow for a higher level of

identity authentication. Map user groups to roles that have the least

amount of privileges needed to accomplish the job.

Along with the aforementioned practice, you should use Just in Time

(JIT) access systems to allow site reliability engineers (SREs), operators,

and those who might need to have escalated privileges for a short period

of time to accomplish a very specific task. Alternatively, these users

should have different identities that are more heavily audited for sign-on,

and those accounts should have more elevated privileges assigned by the

user account or group bound to a role.

Specific service accounts should be used for CI/CD tools that deploy

into your Kubernetes clusters. This ensures for auditability within the

cluster and an understanding of who might have deployed or deleted any

objects in a cluster.

If you’re still using Helm v2 to deploy applications, the default service

account is Tiller, deployed to kube-system . It is better to deploy

Tiller into each namespace with a service account specifically for Tiller

that is scoped for that namespace. In the CI/CD tool that calls the Helm

install/upgrade command, as a prestep, initialize the Helm client with the

service account and the specific namespace for the deployment. The

service account name can be the same for each namespace, but the

namespace should be specific. It is advised to move to Helm v3 as one of

its core principles is that Tiller is no longer needed to run in a cluster.

The new architecture is completely client based and uses the RBAC

access of the user calling the helm commands. This is in alignment of the

preferred approach of client based tooling to the Kubernetes API.

Limit any applications that require watch and list on the Secrets

API. This basically allows the application or the person who deployed

the pod to view the secrets in that namespace. If an application needs to

access the Secrets API for specific secrets, limit using get on any

specific secrets that the application needs to read outside of those that it

is directly assigned.

Summary

Principles for developing applications for cloud native delivery is a topic

for another day, but it is universally accepted that strict separation of

configuration from code is a key principal for success. With native objects

for nonsensitive data, the ConfigMap API, and for sensitive data, the

Secrets API, Kubernetes can now manage this process in a declarative

approach. As more and more critical data is represented and stored natively

in the Kubernetes API, it is critical to secure access to those APIs through

proper gated security processes such as RBAC and integrated authentication

systems.

As you’ll see throughout the rest of this book, these principles permeate

every aspect of the proper deployment of services into a Kubernetes

platform to build a stable, reliable, secure, and robust system.

Chapter 5. Continuous Integration, Testing, and
Deployment

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

In this chapter, we look at the key concepts of how to integrate a continuous

integration/continuous deployment (CI/CD) pipeline to deliver your

applications to Kubernetes. Building a well-integrated pipeline will enable

you to deliver applications to production with confidence, so here we look

at the methods, tools, and processes to enable CI/CD in your environment.

The goal of CI/CD is to have a fully automated process, from a developer

checking in code to rolling out the new code to production. You want to

avoid manually rolling out updates to your apps deployed to Kubernetes

because it can be very error prone. Manually managing application updates

in Kubernetes leads to configuration drift and fragile deployment updates,

and overall agility delivering an application is lost.

We cover the following topics in this chapter:

Version control

CI

Testing

Tagging images

CD

Deployment strategies

Testing Deployments

Chaos testing

We also go through an example CI/CD pipeline, which consists of the

following tasks:

Pushing code changes to the Git repository

Running a build of the application code

Running test against the code

Building a container image on a successful test

Pushing the container image to a container registry

Deploying the application to Kubernetes

Running a test against a deployed application

Performing rolling upgrades on Deployments

Version Control

Every CI/CD pipeline starts with version control, which maintains a

running history of application and configuration code changes. Git has

become the industry standard as a source-control management platform,

and every Git repository will contain a master branch. A master branch

contains your production code. You will have other branches for feature and

development work that eventually will also be merged to your master

branch. There are many ways to set up a branching strategy, and the setup

will be very dependent on the organization structure and separation of

duties. We find that including both application code and configuration code,

such as a Kubernetes manifest or Helm charts, helps promote good DevOps

principles of communication and collaboration. Having both application

developers and operation engineers collaborate in a single repository builds

confidence in a team to deliver an application to production.

Continuous Integration

CI is the process of integrating code changes continuously into a version-

control repository. Instead of committing large changes less often, you

commit smaller changes more often. Each time a code change is committed

to the repository, a build is kicked off. This allows you to have a quicker

feedback loop into what might have broken the application if problems

indeed arise. At this point you might be asking, “Why do I need to know

about how the application is built, isn’t that the application developer’s

role?” Traditionally, this might have been the case, but as companies move

toward embracing a DevOps culture, the operations team comes closer to

the application code and software development workflows.

There are many solutions that provide CI, with Jenkins being one of the

more popular tools.

Testing

The goal of running tests in the pipeline is to quickly provide a feedback

loop for code changes that break the build. The language that you’re using

will determine the testing framework you use. For example, Go applications

can use go test for running a suite of unit tests against your code base.

Having an extensive test suite helps to avoid delivering bad code into your

production environment. You’ll want to ensure that if tests fail in the

pipeline, the build fails after the test suite runs. You don’t want to build the

container image and push it to a registry if you have failing tests against

your code base.

Again, you might be asking, “Isn’t creating tests a developer’s job?” As you

begin automating the delivery of infrastructure and applications to

production, you need to think about running automated tests against all of

the pieces of the code base. For example, in Chapter 2, we talked about

using Helm to package applications for Kubernetes. Helm includes a tool

called helm lint , which runs a series of tests against a chart to examine

any potential issues with the chart provided. There are many different tests

that need to be run in an end-to-end pipeline. Some are the developer’s

responsibility, like unit testing for the application, but others, like smoke

testing, will be a joint effort. Testing the code base and its delivery to

production is a team effort and needs to be implemented end to end.

Container Builds

When building your images, you should optimize the size of the image.

Having a smaller image decreases the time it takes to pull and deploy the

image, and also increases the security of the image. There are multiple ways

of optimizing the image size, but some do have trade-offs. The following

strategies will help you build the smallest image possible for your

application:

Multistage builds

These allow you to remove the dependencies not needed for your

applications to run. For example, with Golang, we don’t need all the

build tools used to build the static binary, so multistage builds allow you

in a single Dockerfile to run a build step with the final image containing

only the static binary that’s needed to run the application.

Distroless base images

These remove all the unneeded binaries and shells from the image. This

really reduces the size of the image and increases the security. The trade-

off with distroless images is you don’t have a shell, so you can’t attach a

debugger to the image. You might think this is great, but it can be a pain

to debug an application. Distroless images contain no package manager,

shell, or other typical OS packages, so you might not have access to the

debugging tools you are accustomed to with a typical OS.

Optimized base images

These are images that focus on removing the cruft out of the OS layer

and provide a slimmed-down image. For example, Alpine provides a

base image that starts at just 10 MB, and it also allows you to attach a

local debugger for local development. Other distros also typically offer

an optimized base image, such as Debian’s Slim image. This might be a

good option for you because its optimized images give you capabilities

you expect for development while also optimizing for image size and

lower security exposure.

Optimizing your images is extremely important and often overlooked by

users. You might have reasons due to company standards for OSes that are

approved for use in the enterprise, but push back on these so that you can

maximize the value of containers.

We have found that companies starting out with Kubernetes tend to be

successful with using their current OS but then choose a more optimized

image, like Debian Slim. After you mature in operationalizing and

developing against a container environment, you’ll be comfortable with

distroless images.

Container Image Tagging

Another step in the CI pipeline is to build a Docker image so that you have

an image artifact to deploy to an environment. It’s important to have an

image tagging strategy so that you can easily identify the versioned images

you have deployed to your environments. One of the most important things

we can’t preach enough about is not to use “latest” as an image tag. Using

that as an image tag is not a version and will lead to not having the ability to

identify what code change belongs to the rolled-out image. Every image

that is built in the CI pipeline should have a unique tag for the built image.

There are multiple strategies we’ve found to be effective when tagging

images in the CI pipeline. The following strategies allow you to easily

identify the code changes and the build with which they are associated:

BuildID

When a CI build kicks off, it has a buildID associated with it. Using this

part of the tag allows you to reference which build assembled the image.

Build System-BuildID

This one is the same as BuildID but adds the Build System for users who

have multiple build systems.

Git Hash

On new code commits, a Git hash is generated, and using the hash for

the tag allows you to easily reference which commit generated the

image.

githash-buildID

This allows you to reference both the code commit and the buildID that

generated the image. The only caution here is that the tag can be kind of

long.

Continuous Deployment

CD is the process by which changes that have passed successfully through

the CI pipeline are deployed to production without human intervention.

Containers provide a great advantage for deploying changes into

production. Container images become an immutable object that can be

promoted through dev and staging and into production. For example, one of

the major issues we’ve always had has been maintaining consistent

environments. Almost everyone has experienced a Deployment that works

fine in staging, but when it gets promoted to production, it breaks. This is

due to having configuration drift, with libraries and versioning of

components differing in each environment. Kubernetes gives us a

declarative way to describe our Deployment objects that can be versioned

and deployed in a consistent manner.

One thing to keep in mind is that you need to have a solid CI pipeline set up

before focusing on CD. If you don’t have a robust set of tests to catch issues

early in the pipeline, you’ll end up rolling bad code to all your

environments.

Deployment Strategies

Now that we learned the principles of CD, let’s take a look at the different

rollout strategies that you can use. Kubernetes provides multiple strategies

to roll out new versions of your application. And even though it has a built-

in mechanism to provide rolling updates, you can also utilize some more

advanced strategies. Here, we examine the following strategies to deliver

updates to your application:

Rolling updates

Blue/green deployments

Canary deployments

Rolling updates are built into Kubernetes and allow you to trigger an update

to the currently running application without downtime. For example, if you

took your frontend app that is currently running frontend:v1 and updated

the Deployment to frontend:v2, Kubernetes would update the replicas in a

rolling fashion to frontend:v2. Figure 5-1 depicts a rolling update.

Figure 5-1. A Kubernetes rolling update

A Deployment object also lets you configure the maximum amount of

replicas to be updated and the maximum unavailable pods during the

rollout. The following manifest is an example of how you specify the

rolling update strategy:

You need to be cautious with rolling updates because using this strategy can

cause dropped connections. To deal with this issue, you can utilize

readiness probes and preStop life cycle hooks. The readiness probe ensures

that the new version deployed is ready to accept traffic, whereas the preStop

hook can ensure that connections are drained on the current deployed

application. The life cycle hook is called before the container exits and is

synchronous, so it must complete before the final termination signal is

kind: Deployment
apiVersion: v1
metadata:
 name: frontend
spec:
 replicas: 3
 template:
 spec:
 containers:
 - name: frontend
 image: brendanburns/frontend:v1
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1 # Maximum amount of replicas to
 maxUnavailable: 1 # Maximum amount of repli

given. The following example implements a readiness probe and life cycle

hook:

The preStop life cycle hook in this example will gracefully exit NGINX,

whereas a SIGTERM conducts a nongraceful, quick exit.

kind: Deployment
apiVersion: v1
metadata:
 name: frontend
spec:
 replicas: 3
 template:
 spec:
 containers:
 - name: frontend
 image: brendanburns/frontend:v1
 livenessProbe:
 # ...
 readinessProbe:
 httpGet:
 path: /readiness # probe endpoint
 port: 8888
 lifecycle:
 preStop:
 exec:
 command: ["/usr/sbin/nginx","-s","q
 strategy:
 # ...

Another concern with rolling updates is that you now have two versions of

the application running at the same time during the rollover. Your database

schema needs to support both versions of the application. You can also use

a feature flag strategy in which your schema indicates the new columns

created by the new app version. After the rolling update has completed, the

old columns can be removed.

We have also defined a readiness and liveness probe in our Deployment

manifest. A readiness probe will ensure that your application is ready to

serve traffic before putting it behind the service as an endpoint. The

liveness probe ensures that your application is healthy and running, and

restarts the pod if it fails its liveness probe. Kubernetes can automatically

restart a failed pod only if the pod exits on error. For example, the liveness

probe can check its endpoint and restart it if we had a deadlock from which

the pod did not exit.

Blue/green deployments allow you to release your application in a

predictable manner. With blue/green deployments, you control when the

traffic is shifted over to the new environment, so it gives you a lot of control

over the rollout of a new version of your application. With blue/green

deployments, you are required to have the capacity to deploy both the

existing and new environment at the same time. These types of

deployments have a lot of advantages, such as easily switching back to your

previous version of the application. There are some things that you need to

consider with this deployment strategy, however:

Database migrations can become difficult with this deployment option

because you need to consider in-flight transactions and schema update

compatibility.

There is the risk of accidental deletion of both environments.

You need extra capacity for both environments.

There are coordination issues for hybrid deployments in which legacy

apps can’t handle the deployment.

Figure 5-2 depicts a blue/green deployment.

Figure 5-2. A blue/green deployment

Canary deployments are very similar to blue/green deployments, but they

give you much more control over shifting traffic to the new release. Most

modern ingress implementations will give you the ability to release a

percentage of traffic to a new release, but you can also implement a service

mesh technology, like Istio, Linkerd, or HashiCorp Consul, which give you

a number of features that help implement this deployment strategy.

Canary deployments allow you to test new features for only a subset of

users. For example, you might roll out a new version of an application and

only want to test the deployment for 10% of your user base. This allows

you to reduce the risk of a bad deployment or broken features to a much

smaller subset of users. If there are no errors with the deployment or new

features, you can begin shifting a greater percentage of traffic to the new

version of the application. There are also some more advanced techniques

that you can use with canary deployments in which you release to only a

specific region of users or just target only users with a specific profile.

These types of releases are often referred to as A/B or dark releases because

users are unaware they are testing new feature deployments.

With canary deployments, you have some of the same considerations that

you have with blue/green deployments, but there are some additional

considerations as well. You must have:

The ability to shift traffic to a percentage of users

A firm knowledge of steady state to compare against a new release

Metrics to understand whether the new release is in a “good” or “bad”

state

Figure 5-3 provides an example of a canary deployment.

Figure 5-3. A canary deployment

NOTE

Canary releases also suffer from having multiple versions of the application running at

the same time. Your database schema needs to support both versions of the application.

When using these strategies, you’ll need to really focus on how to handle dependent

services and having multiple versions running. This includes having strong API

contracts and ensuring that your data services support the multiple versions you have

deployed at the same time.

Testing in Production

Testing in production helps you to build confidence in the resiliency,

scalability, and UX of your application. This comes with the caveat that

testing in production doesn’t come without challenges and risk, but it’s

worth the effort to ensure reliability in your systems. There are important

aspects you need to address up front when embarking on the

implementation. You need to ensure that you have an in-depth observability

strategy in place, in which you have the ability to identify the effects of

testing in production. Without being able to observe metrics that affect the

end users’ experience of your applications, you won’t have a clear

indication of what to focus on when trying to improve the resiliency of your

system. You also need a high degree of automation in place to be able to

automatically recover from failures that you inject into your systems.

There are many tools that you’ll need to implement to reduce risk and

effectively test your systems when they’re in production. Some of the tools

we have already discussed in this chapter, but there are a few new ones, like

distributed tracing, instrumentation, chaos engineering, and traffic

shadowing. To recap, here are the tools we have already mentioned:

Canary deployments

A/B testing

Traffic shifting

Feature flags

Chaos engineering was developed by Netflix. It is the practice of deploying

experiments into live production systems to discover weaknesses within

those systems. Chaos engineering allows you to learn about the behavior of

your system by observing it during a controlled experiment. Following are

the steps that you want to implement before doing a “game-day”

experiment:

1. Build a hypothesis and learn about your steady state.

2. Have a varying degree of real-world events that can affect the system.

3. Build a control group and experiment to compare to steady state.

4. Perform experiments to form the hypothesis.

It’s extremely important that when you’re running experiments, you

minimize the “blast radius” to ensure that the issues that might arise are

minimal. You’ll also want to ensure that when you’re building experiments,

you focus on automating them, given that running experiments can be labor

intensive.

By this point, you might be asking, “Why wouldn’t I just test in staging?”

We find there are some inherent problems when testing in staging, such as

the following:

Nonidentical deployment of resources.

Configuration drift from production.

Traffic and user behavior tend to be generated synthetically.

The number of requests generated don’t mimic a real workload.

Lack of monitoring implemented in staging.

The data services deployed contain differing data and load than in

production.

We can’t stress this enough: ensure that you have solid confidence in the

monitoring you have in place for production, because this practice tends to

fail users who don’t have adequate observability of their production

systems. Also, starting with smaller experiments to first learn about your

experiments and their effects will help build confidence.

Setting Up a Pipeline and Performing a Chaos
Experiment

The first step in the process is to get a GitHub repository forked so that you

can have your own repository to use through the chapter. You will need to

use the GitHub interface to fork the repository.

Setting Up CI

Now that you have learned about CI, you will set up a build of the code that

we cloned previously.

For this example, we use the hosted drone.io. You’ll need to sign up for a

free account. Log in with your GitHub credentials (this registers your

repositories in Drone and allows you to synchronize the repositories). After

you’re logged in to Drone, select Activate on your forked repository. The

first thing that you need to do is add some secrets to your settings so that

you can push the app to your Docker Hub registry and also deploy the app

to your Kubernetes cluster.

Under your repository in Drone, click Settings and add the following

secrets (see Figure 5-4):

docker_username

docker_password

kubernetes_server

kubernetes_cert

kubernetes_token

The Docker username and password will be whatever you used to register

on Docker Hub. The following steps show you how to create a Kubernetes

service account and certificate and retrieve the token.

For the Kubernetes server, you will need a publicly available Kubernetes

API endpoint.

Figure 5-4. Drone secrets configuration

NOTE

You will need cluster-admin privileges on your Kubernetes cluster to perform the steps

in this section.

You can retrieve your API endpoint by using the following command:

kubectl cluster-info

You should see something like the following: Kubernetes master is running

at https://kbp.centralus.azmk8s.io:443. You’ll store this in the

kubernetes_server secret.

Now let’s create a service account that Drone will use to connect to the

cluster. Use the following command to create the serviceaccount :

kubectl create serviceaccount drone

Now use the following command to create a clusterrolebinding

for the serviceaccount :

Next, retrieve your serviceaccount token:

kubectl create clusterrolebinding drone-admin \
 --clusterrole=cluster-admin \
 --serviceaccount=default:drone

TOKENNAME=`kubectl -n default get serviceaccount/
TOKEN=`kubectl -n default get secret $TOKENNAME -
echo $TOKEN

You’ll want to store the output of the token in the kubernetes_token

secret.

You will also need the user certificate to authenticate to the cluster, so use

the following command and paste the ca.crt for the

kubernetes_cert secret:

Now, build your app in a Drone pipeline and then push it to Docker Hub.

The first step is the build step, which will build your Node.js frontend.

Drone utilizes container images to run its steps, which gives you a lot of

flexibility in what you can do with it. For the build step, use a Node.js

image from Docker Hub:

pipeline:
 build:
 image: node
 commands:
 - cd frontend
 - npm i redis --save

When the build completes, you’ll want to test it, so we include a test step,

which will run npm against the newly built app:

kubectl get secret $TOKENNAME -o yaml | grep 'ca

test:
 image: node
 commands:
 - cd frontend
 - npm i redis --save
 - npm test

Now that you have successfully built and tested your app, you next move

on to a publish step to create a Docker image of the app and push it to

Docker Hub.

In the .drone.yml file, make the following code change:

repo: <your-registry>/frontend

After the Docker build step finishes, it will push the image to your Docker

registry.

Setting Up CD

publish:
 image: plugins/docker
 dockerfile: ./frontend/Dockerfile
 context: ./frontend
 repo: dstrebel/frontend
 tags: [latest, v2]
 secrets: [docker_username, docker_password]

For the deployment step in your pipeline, you will push your application to

your Kubernetes cluster. You will use the deployment manifest that is under

the frontend app folder in your repository:

After the pipeline finishes its deployment, you will see the pods running in

your cluster. Run the following command to confirm that the pods are

running:

kubectl get pods

You can also add a test step that will retrieve the status of the deployment

by adding the following step in your Drone pipeline:

Performing a Rolling Upgrade

kubectl:
 image: dstrebel/drone-kubectl-helm
 secrets: [kubernetes_server, kubernetes_cert
 kubectl: "apply -f ./frontend/deployment.yaml

 test-deployment:
 image: dstrebel/drone-kubectl-helm
 secrets: [kubernetes_server, kubernetes_cert
 kubectl: "get deployment frontend"

Let’s demonstrate a rolling upgrade by changing a line in the frontend code.

In the server.js file, change the following line and then commit the change:

console.log('api server is running.');

You will see the deployment rolling out and rolling updates happening to

the existing pods. After the rolling update finishes, you’ll have the new

version of the application deployed.

A Simple Chaos Experiment

There are a variety of tools in the Kubernetes ecosystem that can help with

performing chaos experiments in your environment. They range from

sophisticated hosted Chaos as a Service solutions to basic chaos experiment

tools that kill pods in your environment. Following are some of the tools

with which we’ve seen users have success:

Gremlin

Hosted chaos service that provides advanced features for running chaos

experiments

PowerfulSeal

Open source project that provides advanced chaos scenarios

Chaos Toolkit

Open source project with a mission to provide a free, open, and

community-driven toolkit and API to all the various forms of chaos

engineering tools

KubeMonkey

Open source tool that provides basic resiliency testing for pods in your

cluster

Let’s set up a quick chaos experiment to test the resiliency of your

application by automatically terminating pods. For this experiment, we’ll

use Chaos Toolkit:

pip install -U chaostoolkit

pip install chaostoolkit-kubernetes

chaos run experiment.json

Best Practices for CI/CD

export FRONTEND_URL="http://$(kubectl get svc fro

Your CI/CD pipeline won’t be perfect on day one, but consider some of the

following best practices to iteratively improve on the pipeline:

With CI, focus on automation and providing quick builds. Optimizing

the build speed will provide developers quick feedback if their changes

have broken the build.

Focus on providing reliable tests in your pipeline. This will give

developers rapid feedback on issues with their code. The faster the

feedback loop to developers, the more productive they’ll become in their

workflow.

When deciding on CI/CD tools, ensure that the tools allow you to define

the pipeline as code. This will allow you to version-control the pipeline

with your application code.

Ensure that you optimize your images so that you can reduce the size of

the image and also reduce the attack surface when running the image in

production. Multistage Docker builds allow you to remove packages not

needed for the application to run. For example, you might need Maven to

build the application, but you don’t need it for the actual running image.

Avoid using “latest” as an image tag, and utilize a tag that can be

referenced back to the buildID or Git commit.

If you are new to CD, utilize Kubernetes rolling upgrades to start out.

They are easy to use and will get you comfortable with deployment. As

you become more comfortable and confident with CD, look at utilizing

blue/green and canary deployment strategies.

With CD, ensure that you test how client connections and database

schema upgrades are handled in your application.

Testing in production will help you build reliability into your

application, and ensure that you have good monitoring in place. With

testing in production, also start at a small scale and limit the blast radius

of the experiment.

Summary

In this chapter, we discussed the stages of building a CI/CD pipeline for

your applications, which let you reliably deliver software with confidence.

CI/CD pipelines help reduce risk and increase throughput of delivering

applications to Kubernetes. We also discussed the different deployment

strategies that can be utilized for delivering applications.

Chapter 6. Versioning, Releases, and Rollouts

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

One of the main complaints of traditional monolithic applications is that

over time they begin to grow too large and unwieldy to properly upgrade,

version, or modify at the speed the business requires. Many can argue that

this is one of the main critical factors that led to more Agile development

practices and the advent of microservice architectures. Being able to

quickly iterate on new code, solve new problems, or fix hidden problems

before they become major issues, as well as the promise of zero-downtime

upgrades, are all goals that development teams strive for in this ever-

changing internet economy world. Practically, these issues can be solved

with proper processes and procedures in place, no matter the type of

system, but this usually comes at a much higher cost of both technology and

human capital to maintain.

The adoption of containers as the runtime for application code allows for

the isolation and composability that was helpful in designing systems that

could get close, but still required a high level of human automation or

system management to maintain at a dependable level over large system

footprints. As the system grew, more brittleness was introduced, and

systems engineers began to build complex automation processes to deliver

on complex release, upgrade, and failure detection mechanisms. Service

orchestrators such as Apache Mesos, HashiCorp Nomad, and even

specialized container-based orchestrators such as Kubernetes and Docker

Swarm evolved this into more primitive components to their runtime. Now,

systems engineers can solve more complex system problems as the table

stakes have been elevated to include the versioning, release, and

deployment of applications into the system.

Versioning

This section is not meant to be a primer on software versioning and the

history behind it; there are countless articles and computer science course

books on the subject. The main thing is to pick a pattern and stick with it.

The majority of software companies and developers have agreed that some

form of semantic versioning is the most useful, especially in a microservice

architecture in which a team that writes a certain microservice will depend

on the API compatibility of other microservices that make up the system.

For those new to semantic versioning, the basics are that it follows a three-

part version number in a pattern of major version, minor version, and patch,

usually expressed in a dot notation such as 1(major).2(minor).3(patch). The

patch signifies an incremental release that includes a bug fix or very minor

change that has no API changes. The minor version signifies updates that

might have new API changes but is backward compatible with the previous

version. This is a key attribute for developers working with other

microservices they might not be involved in developing. Knowing that I

have my service written to communicate with version 1.4.7 of another

microservice that has been recently upgraded to 1.5.7 should signify that I

might not need to change my code unless I want to take advantage of any

new API features. The major version is a breaking change increment to the

code. In most cases, the API is no longer compatible between major

versions of the same code. There are many slight modifications to this

process, including a “4” version to indicate the stage of the software in its

development life cycle, such as 1.4.7.0 for alpha code, and 1.4.7.3 for

release. The most important thing is that there is consistency across the

system.

Releases

In truth, Kubernetes does not really have a release controller, so there is no

native concept of a release. This is usually added to a Deployment

metadata.labels specification and/or in the

pod.spec.template.metadata.label specification. When to

include either is very important, and based on how CD is used to update

changes to deployments, it can have varied effects. When Helm for

Kubernetes was introduced, one of its main concepts was the notion of a

release to differentiate the running instance of the same Helm chart in a

cluster. This concept is easily reproducible without Helm; however, Helm

natively keeps track of releases and their history, so many CD tools

integrate Helm into their pipelines to be the actual release service. Again,

the key here is consistency in how versioning is used and where it is

surfaced in the system state of the cluster.

Release names can be quite useful if there is institutional agreement as to

the definition of certain names. Often labels such as stable or canary

are used, which helps to also give some kind of operational control when

tools such as service meshes are added to make fine-grained routing

decisions. Large organizations that drive numerous changes for different

audiences will also adopt a ring architecture that can also be denoted such

as ring-0 , ring-1 , and so on.

This topic requires a little side trip into the specifics of labels in the

Kubernetes declarative model. Labels themselves are very much free form

and can be any key/value pair that follows the syntactical rules of the API.

The key is not really the content but how each controller handles labels,

changes to labels, and selector matching of labels. Jobs, Deployments,

ReplicaSets, and DaemonSets support selector-based matching of pods via

labels through direct mapping or set-based expressions. It is important to

understand that label selectors are immutable after they are created, which

means if you add a new selector and the pod’s labels have a corresponding

match, a new ReplicaSet is made, not an upgrade to an existing ReplicaSet.

This becomes very important to understand when dealing with rollouts,

which we discuss next.

Rollouts

Prior to the Deployment controller being introduced in Kubernetes, the only

mechanism that existed to control how applications were rolled out by the

Kubernetes controller process was using the command-line interface (CLI)

command kubectl rolling-update on the specific

replicaController that was to be updated. This was very difficult

for declarative CD models because this was not part of the state of the

original manifest. One had to carefully ensure that manifests were updated

correctly, versioned properly so as to not accidentally roll the system back,

and archived when no longer needed. The Deployment controller added the

ability to automate this update process using a specific strategy and then

allowing the system to read the declarative new state based on changes to

the spec.template of the deployment. This last fact is often

misunderstood by early users of Kubernetes and causes frustration when

they change a label in the Deployment metadata fields, reapply a manifest,

and no update has been triggered. The Deployment controller is able to

determine changes to the specification and will take action to update the

Deployment based on a strategy that is defined by the specification.

Kubernetes deployments support two strategies, rollingUpdate and

recreate , the former being the default.

If a rolling update is specified, the deployment will create a new ReplicaSet

to scale to the number of required replicas, and the old ReplicaSet will scale

down to zero based on specific values for maxUnavailble and

maxSurge . In essence, those two values will prevent Kubernetes from

removing older pods until a sufficient number of newer pods have come

online, and will not create new pods until a certain number of old pods have

been removed. The nice thing is that the Deployment controller will keep a

history of the updates, and through the CLI, you can roll back deployments

to previous versions.

The recreate strategy is a valid strategy for certain workloads that can

handle a complete outage of the pods in a ReplicaSet with little to no

degradation of service. In this strategy the Deployment controller will

create a new ReplicaSet with the new configuration and will delete the prior

ReplicaSet before bringing the new pods online. Services that sit behind

queue-based systems are an example of a service that could handle this type

of disruption, because messages will queue while waiting for the new pods

to come online, and message processing will resume as soon as the new

pods come online.

Putting It All Together

Within a single service deployment, a few key areas are affected by

versioning, release, and rollout management. Let’s examine an example

deployment and then break down the specific areas of interest as they relate

to best practices:

Web Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gb-web-deploy
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production
 release: guest-book-stable
 release number: 34e57f01
spec:
 strategy:
 type: rollingUpdate
 rollingUpdate:
 maxUnavailbale: 3
 maxSurge: 2
 selector:
 matchLabels:
 app: gb-web
 ver: 1.5.8

 matchExpressions:
 - {key: environment, operator: In, values:
 template:
 metadata:
 labels:
 app: gb-web
 ver: 1.5.8
 environment: production
 spec:
 containers:
 - name: gb-web-cont
 image: evillgenius/gb-web:v1.5.5
 env:
 - name: GB_DB_HOST
 value: gb-mysql
 - name: GB_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 resources:
 limits:
 memory: "128Mi"
 cpu: "500m"
 ports:
 - containerPort: 80

DB Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
 name: gb-mysql
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production

 release: guest-book-stable
 release number: 34e57f01
spec:
 selector:
 matchLabels:
 app: gb-db
 tier: backend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: gb-db
 tier: backend
 ver: 1.5.9
 environment: production
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

DB Backup Job
apiVersion: batch/v1
kind: Job
metadata:
 name: db-backup
 labels:
 app: guest-book
 appver: 1.6.9
 environment: production
 release: guest-book-stable
 release number: 34e57f01
 annotations:
 "helm.sh/hook": pre-upgrade
 "helm.sh/hook": pre-delete
 "helm.sh/hook": pre-rollback
 "helm.sh/hook-delete-policy": hook-succeeded
spec:
 template:
 metadata:
 labels:
 app: gb-db-backup
 tier: backend
 ver: 1.6.1
 environment: production
 spec:
 containers:
 - name: mysqldump
 image: evillgenius/mysqldump:v1
 env:
 - name: DB_NAME
 value: gbdb1
 - name: GB_DB_HOST
 value: gb-mysql
 - name: GB_DB_PASSWORD
 valueFrom:

Upon first inspection, things might look a little off. How can a deployment

have a version tag and the container image the deployment uses have a

different version tag? What will happen if one changes and the other does

not? What does release mean in this example, and what effect on the system

will that have if it changes? If a certain label is changed, when will it trigger

an update to my deployment? We can find the answers to these questions by

looking at some of the best practices for versioning, releases, and rollouts.

Best Practices for Versioning, Releases, and Rollouts

Effective CI/CD and the ability to offer reduced or zero downtime

deployments are both dependent on using consistent practices for

versioning and release management. The best practices noted below can

help to define consistent parameters that can assist DevOps teams in

delivering smooth software deployments:

 secretKeyRef:
 name: mysql-pass
 key: password
 volumeMounts:
 - mountPath: /mysqldump
 name: mysqldump
 volumes:
 - name: mysqldump
 hostPath:
 path: /home/bck/mysqldump
 restartPolicy: Never
 backoffLimit: 3

Use semantic versioning for the application in its entirety that differs

from the version of the containers and the version of the pods

deployment that make up the entire application. This allows for

independent life cycles of the containers that make up the application

and the application as a whole. This can become quite confusing at first,

but if a principled hierarchical approach is taken to when one changes

the other, you can easily track it. In the previous example, the container

itself is currently on v1.5.5 ; however, the pod specification is a

1.5.8 , which could mean that changes were made to the pod

specification, such as new ConfigMaps, additional secrets, or updated

replica values, but the specific container used has not changed its

version. The application itself, the entire guestbook application and all of

its services, is at 1.6.9 , which could mean that operations made

changes along the way that were beyond just this specific service, such

as other services that make up the entire application.

Use a release and release version/number label in your deployment

metadata to track releases from CI/CD pipelines. The release name and

release number should coordinate with the actual release in the CI/CD

tool records. This allows for traceability through the CI/CD process into

the cluster and allows for easier rollback identification. In the previous

example, the release number comes directly from the release ID of the

CD pipeline that created the manifest.

If Helm is being used to package services for deployment into

Kubernetes, take special care to bundle together those services that need

to be rolled back or upgraded together into the same Helm chart. Helm

allows for easy rollback of all components of the application to bring the

state back to what it was before the upgrade. Because Helm actually

processes the templates and all of the Helm directives before passing a

flattened YAML configuration, the use of life cycle hooks allows for

proper ordering of the application of specific templates. Operators can

use proper Helm life cycle hooks to ensure that upgrades and rollback

will happen correctly. The previous example for the Job specification

uses Helm life cycle hooks to ensure that the template runs a backup of

the database before a rollback, upgrade, or delete of the Helm release. It

also ensures that the Job is deleted after the job is run successfully,

which, until the TTL Controller comes out of alpha in Kubernetes,

would require manual cleanup.

Agree on a release nomenclature that makes sense for the operational

tempo of the organization. Simple stable , canary , and alpha

states are quite adequate for most situations.

Summary

Kubernetes has allowed for more complex, Agile development processes to

be adopted within companies large and small. The ability to automate much

of the complex processes that would usually require large amounts of

human and technical capital has now been democratized to allow for even

startups to take advantage of this cloud pattern with relative ease. The true

declarative nature of Kubernetes really shines when planning the proper use

of labels and using native Kubernetes controller capabilities. By properly

identifying operational and development states within the declarative

properties of the applications deployed into Kubernetes, organizations can

tie in tooling and automation to more easily manage the complex processes

of upgrades, rollouts, and rollbacks of capabilities.

Chapter 7. Worldwide Application Distribution
and Staging

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

To this point in the book, we have seen a number of different practices for

building, developing, and deploying applications, but there is a whole

different set of concerns when it comes to deploying and managing an

application with a worldwide footprint.

There are many different reasons why an application might need to scale to

a global deployment. The first and most obvious one is simply scale. It

might be that your application is so successful or mission critical that it

simply needs to be deployed around the world in order to provide the

capacity needed for its users. Examples of such applications include a

worldwide API gateway for a public cloud provider, a large-scale IoT

product with a worldwide footprint, a highly successful social network, and

more.

Although there are relatively few of us who will build out systems that

require worldwide scale, many more applications require a worldwide

footprint for latency. Even with containers and Kubernetes there is no

getting around the speed of light. To minimize latency between clients and

our applications, it is sometimes necessary to distribute our applications

around the world to minimize the physical distance between the application

and its users.

Finally, an even more common reason for global distribution is locality.

Either for reasons of bandwidth (e.g., a remote sensing platform) or data

privacy (geographic restrictions), it is sometimes necessary to deploy an

application in specific locations for the application to be possible or

successful. As more and more countries and regions implement data privacy

and sovereignty laws and regulations, it is becoming a common business

necessity to deploy your application in specific locations to serve users who

reside in that location.

In all of these cases, your application is no longer simply present in a small

handful of production clusters. Instead it is distributed across tens to

hundreds of different geographic locations. The management of these

locations, as well as the demands of rolling out a globally reliable service, is

a significant challenge. This chapter covers approaches and practices for

doing this successfully.

Distributing Your Image

Before you can even consider running your application around the world,

you need to have that image available to clusters located around the globe.

The first thing to consider is whether your image registry has automatic

geo-replication. Many image registries provided by cloud providers will

automatically distribute your image around the world and resolve a request

for that image to the storage location nearest to the cluster from which you

are pulling the image. Many clouds enable you to decide where you want to

replicate the image; for example, you might know of locations where you

are not going to be present. An example of such a registry is the Microsoft

Azure container registry, but others provide similar services. If you use a

cloud-provided registry that supports geo-replication, distributing your

image around the world is simple. You push the image into the registry,

select the regions for geo-distribution, and the registry takes care of the rest.

If you are not using a cloud registry, or your provider does not support

automatic geo-distribution of images, you will need to solve that problem

yourself. One option is to use a registry located in a specific location. There

are several concerns about such an approach. Image pull latency often

dictates the speed with which you can launch a container in a cluster. This

in turn can determine how quickly you can respond to a machine failure,

given that generally in the case of a machine failure, you will need to pull

the container image down to a new machine.

Another concern about a single registry is that it can be a single point of

failure. If the registry is located in a single region or a single datacenter, it’s

possible that the registry could go offline due to a large-scale incident in

that datacenter. If your registry goes offline, your CI/CD pipeline will stop

working, and you’ll be unable to deploy new code. This obviously has a

significant impact on both developer productivity and application

operations. Additionally, a single registry can be much more expensive

because you will be using significant bandwidth each time you launch a

new container, and even though container images are generally fairly small,

the bandwidth can add up. Despite these negatives, a single registry solution

can be the appropriate answer for small-scale applications running in only a

few global regions. It certainly is simpler to set up than full-scale image

replication.

If you cannot use cloud-provided geo-replication and you need to replicate

your image, you are on your own to craft a solution for image replication.

To implement such a service, you have two options. The first is to use

geographic names for each image registry (e.g., us.my-registry.io ,

eu.my-registry.io , etc.). The advantage of this approach is that it is

simple to set up and manage. Each registry is entirely independent, and you

can simply push to all registries at the end of your CI/CD pipeline. The

downside is that each cluster will require a slightly different configuration

to pull the image from the nearest geographic location. However, given that

you likely will have geographic differences in your application

configurations anyway, this downside is relatively easy to manage and

likely already present in your environment.

The second option is to use some sort of networking configuration to

connect your image pulls to a specific repository. In this approach you still

push your image to multiple different registries, but instead of giving them

each a unique name, you give them all a single DNS endpoint (e.g. my-

registry.io) You can use geography-aware DNS (GeoDNS) which

will respond to DNS requests from different geographic regions with

different IP addresses, or if you have the right networking infrastructure,

you can use multi-cast IP addresses. In multi-cast, all of your registries

share the same IP address but it is advertised to the internet in multiple

physical locations and shortest-path network routing is relied on to take

traffic to the server which provides the nearest image registry. Both of these

network configurations are tricky to do correctly. The best answer is

definitely to use a cloud-based registry, even if you are pulling to on-

premises servers. If you really want to run your own registry (and take on

the operational burden that implies) then we strongly suggest you use the

regional server approach in the previous paragraph unless you have

previous network experience with replicated services. The next section

describes how you can parameterize your deployment to, for example, use

different registries in different regions.

Parameterizing Your Deployment

When you have replicated your image everywhere, you need to

parameterize your deployments for different global locations. Whenever

you are deploying to a variety of different regions, there are bound to be

differences in the configuration of your application in the different regions.

For example, if you don’t have a geo-replicated registry, you might need to

tweak the image name for different regions, but even if you have a geo-

replicated image, it’s likely that different geographic locations will present

different load on your application, and thus the size (e.g., the number of

replicas) as well as other configuration can be different between regions.

Managing this complexity in a manner that doesn’t incur undue toil is key

to successfully managing a worldwide application.

The first thing to consider is how to organize your different configurations

on disk. A common way to achieve this is by using a different directory for

each global region. Given these directories, it might be tempting to simply

copy the same configurations into each directory, but doing this is

guaranteed to lead to drift and changes between configurations in which

some regions are modified and other regions are forgotten. Instead, using a

template-based approach is the best idea so that most of the configuration is

retained in a single template that is shared by all regions, and then

parameters are applied to that template to produce the region-specific

templates. Helm is a commonly used tool for this sort of templating (for

details, see Chapter 2).

Load-Balancing Traffic Around the World

Now that your application is running around the world, the next step is to

determine how to direct traffic to the application. In general, you want to

take advantage of geographic proximity to ensure low-latency access to

your service. But you also want to failover across geographic regions in

case of an outage or any other source of service failure. Correctly setting up

the balancing of traffic to your various regional deployments is key to the

establishment of both a performant and reliable system.

Let’s begin with the assumption that you have a single hostname that you

want to serve as your service. For example, myapp.myco.com. One initial

decision that you need to make is whether you want to use the Domain

Name System (DNS) protocol to implement load balancing across your

regional endpoints. If you use DNS for load balancing, the IP address that is

returned when a user makes a DNS query to myapp.myco.com is based on

both the location of the user accessing your service as well as the current

availability of your service. The other alternative is multi-cast IP addresses,

where the same IP address is advertised from multiple locations on the

internet. When a user looks up myapp.myco.com the DNS always returns

this fixed IP address, but the actual routing of packets varies depending on

where the connection is in the network.

Reliably Rolling Out Software Around the World

After you have templatized your application so that you have proper

configurations for each region, the next important problem is how to deploy

these configurations around the world. It might be tempting to

simultaneously deploy your application worldwide so that you can

efficiently and quickly iterate your application, but this, although Agile, is

an approach that can easily leave you with a global outage. Any errors that

you accidentally roll out to the world are immediately present for all users

in all regions. Instead, for most production applications, a more carefully

staged approach to rolling out your software around the world is more

appropriate. When combined with things like global load balancing, these

approaches can maintain high availability even in the face of major

application failures.

Overall, when approaching the problem of a global rollout, the goal is to

roll out software as quickly as possible, while simultaneously detecting

issues quickly—ideally before they affect many users. Let’s assume that by

the time you are performing a global rollout, your application has already

passed basic functional and load testing. Before a particular image (or

images) is certified for a global rollout, it should have gone through enough

testing that you believe the application is operating correctly. It is important

to note that this does not mean that your application is operating correctly.

Though testing catches many problems, in the real world, application

problems are often first noticed when they are rolled out to production

traffic. This is because the true nature of production traffic is often difficult

to simulate with perfect fidelity. For example, you might test with only

English language inputs, whereas in the real world, you see input from a

variety of languages. Or your set of test inputs may not be comprehensive

for the real-world data your application ingests. Of course, any time that

you do see a failure in production that wasn’t caught by testing, it is a

strong indicator that you need to extend and expand your testing.

Nonetheless, it is still true that many problems are caught during a

production rollout.

With this in mind, each region that you roll out to is an opportunity to

discover a new problem. And, because the region is a production region, it

is also a potential outage to which you will need to react. These factors

combine to set the stage for how you should approach regional rollouts.

NOTE

Throughout this discussion we talk about rolling out software to a geographic region,

but this sort of progressive rollout is only one form of progressive exposure control.

An alternative way to rollout a feature is to use feature flags to do progressive

exposure. With feature flags, a new feature is first rolled out via a release that follows

a geographc rollout as described below, however the feature is flagged “off” by

default. Once the release is in all regions, the flag is gradually turned on by (for

example) activating the feature for 10% of all users, followed by 20% and so on until

the feature is fully rolled out. There are numerous configuration systems for doing

flagged based experiements and progressive rollouts. And combining flags with

geographic releases is a very stable way to release new features while being able to

quickly respond to failures.

Pre-Rollout Validation

Before you even consider rolling out a particular version of your software

around the world, it’s critically important to validate that software in some

sort of synthetic testing environment. If you have your CD pipeline set up

correctly, all code prior to a particular release build will have undergone

some form of unit testing, and possibly limited integration testing.

However, even with this testing in place, it’s important to consider two

other sorts of tests for a release before it begins its journey through the

release pipeline. The first is complete integration testing. This means that

you assemble the entirety of your stack into a full-scale deployment of your

application but without any real-world traffic. This complete stack generally

will include either a copy of your production data or simulated data on the

same size and scale as your true production data. If in the real world, the

data in your application is 500 GB, it’s critical that in preproduction testing

your dataset is roughly the same size (and possibly even literally the same

dataset).

Generally speaking, setting up a complete integration test environment.

Often, production data is really present only in production, and generating a

synthetic dataset of the same size and scale is quite difficult. Because of this

complexity, setting up a realistic integration testing dataset is a great

example of a task that it pays to do early on in the development of an

application. If you set up a synthetic copy of your dataset early, when the

dataset itself is quite small, your integration test data grows gradually at the

same pace as your production data. This is generally significantly more

manageable than if you attempt to duplicate your production data when you

are already at scale.

Sadly, many people don’t realize that they need a copy of their data until

they are already at a large scale and the task is difficult. In such cases it

might be possible to deploy a read/write-deflecting layer in front of your

production data store. Obviously, you don’t want your integration tests

writing to production data, but it is often possible to set up a proxy in front

of your production data store that reads from production but stores writes in

a side table that is also consulted on subsequent reads.

Of course it is also extremely important that if you use your production data

for testing and development that you are very careful with the security of

that data. There have been numerous data leaks associated with developers

accidentally placing their production user data in insecure locations.

Regardless of how you manage to set up your integration testing

environment, the goal is the same: to validate that your application behaves

as expected when given a series of test inputs and interactions. There are a

variety of ways to define and execute these tests—from the most manual, a

worksheet of tests and human effort (not recommended because it is fairly

error prone), through tests that simulate browsers and user interactions, like

clicks and so forth. In the middle are tests that probe RESTful APIs but

don’t necessarily test the web UI built on top of those APIs. Regardless of

how you define your integration tests, the goal should be the same: an

automated test suite that validates the correct behavior of your application

in response to a complete set of real-world inputs. For simple applications it

may be possible to perform this validation in premerge testing, but for most

large-scale real-world applications, a complete integration environment is

required.

Integration testing will validate the correct operation of your application,

but you should also load-test the application. It is one thing to demonstrate

that the application behaves correctly, it is quite another to demonstrate that

it stands up to real-world load. In any reasonably high-scale system, a

significant regression in performance—for example, a 20% increase in

request latency—has a significant impact on the UX of the application and,

in addition to frustrating users, can cause an application to completely fail.

Thus, it is critical to ensure that such performance regressions do not

happen in production.

Like integration testing, identifying the correct way to load-test an

application can be a complex proposition; after all, it requires that you

generate a load similar to production traffic but in a synthetic and

reproduceable way. One of the easiest ways to do this is to simply replay

the logs of traffic from a real-world production system. Doing this can be a

great way to perform a load-test whose characteristics match what your

application will experience when deployed. However, using replay isn’t

always foolproof. For example, if your logs are old, and your application or

dataset has changed, it’s possible that the performance on old, replayed logs

will be different that the performance on fresh traffic. Additionally, if you

have real-world dependencies that you haven’t mocked, it’s possible that

the old traffic will be invalid when sent over to the dependencies (e.g., the

data might no longer exist).

As with production data it is critical to safe-guard the security of any

recorded real-world requests, just like the production databases, production

requests often contain private information or secure credentials (or both!)

and it is critical that the security of any recordings be treated the same as

the actual user requests.

Because of the challenges associated with saving, securing and managing

this test data, many systems, even critical systems, are developed for a long

time without a load test. Like modeling your production data, this is a clear

example of something that is easier to maintain if you start earlier. If you

build a load-test when your application has only a handful of dependencies,

and improve and iterate the load-test as you adapt your application, you will

have a far easier time than if you attempt to retrofit load-testing onto an

existing large-scale application.

Assuming that you have crafted a load test, the next question is the metrics

to watch when load-testing your application. The obvious ones are requests

per second and request latency because those are clearly the user-facing

metrics.

When measuring latency, it’s important to realize that this is actually a

distribution, and you need to measure both the mean latency as well as the

outlier percentiles (like the 90th and 99th percentile) since they represent

the “worst” UX of your application. Problems with very long latencies can

be hidden if you just look at the averages, but if 10% of your users are

having a bad time, it can have a significant impact on the success of your

product.

In addition, it’s worth looking at the resource usage (CPU, memory,

network, disk) of the application under load test. Though these metrics do

not directly contribute to the UX, large changes in resource usage for your

application should be identified and understood in preproduction testing. If

your application is suddenly consuming twice as much memory, it’s

something you will want to investigate, even if you pass your load test,

because eventually such significant resource growth will affect the quality

and availability of your application. Depending on the circumstances, you

might continue bringing a release to production, but at the same time, you

need to understand why the resource footprint of your application is

changing.

Canary Region

When your application appears to be operating correctly, the first step

should be a canary region. A canary region is a deployment that receives

real-world traffic from people and teams who want to validate your release.

These can be internal teams that depend on your service, or they might be

external customers who are using your service. Canaries exist to give a

team some early warning about changes that you are about to roll out that

might break them. No matter how good your integration and load testing,

it’s always possible that a bug will slip through that isn’t covered by your

tests, but is critical to some user or customer. In such cases, it is much better

to catch these issues in a space where everyone using or deploying against

the service understands that there is a higher probability of failure. This is

what the canary region is.

NOTE

Canary is also a great place for your team or company to dogfood or self-test the early

release before it goes further in production. A great best-practice is to set up an HTTP

redirector so that requests from within your company are redirected to an instance of

your product that is running in canary. That way every person on your team becomes

an end-to-end tester before the release proceeds to external users.

Canaries must be treated as a production region in terms of monitoring,

scale, features, and so on. However, because it is the first stop on the release

process, it is also the location most likely to see a broken release. This is

OK; in fact it is precisely the point. Your customers will knowingly use a

canary for lower-risk use cases (e.g., development or internal users) so that

they can get an early indication of any breaking changes that you might be

rolling out as part of a release.

Because the goal of a canary is to get early feedback on a release, it is a

good idea to leave the release in the canary region for a few days. This

enables a broad collection of customers to access it before you move on to

additional regions. The need for this length of time is that sometimes a bug

is probabilistic (e.g., 1% of requests) or it manifests only in an edge case

that takes some time to present itself. It might not even be severe enough to

trigger automated alerts, but there might be a problem in business logic that

is visible only via customer interactions.

Identifying Region Types

When you begin thinking about rolling out your software across the world,

it’s important to think about the different characteristics of your different

regions. After you begin rolling out software to production regions, you

need to run it through integration testing as well as initial canary testing.

This means that any issues you find will be issues that did not manifest in

either of these settings. Think about your different regions. Do some get

more traffic than others? Are some accessed in a different way? An

example of a difference might be that in the developing world, traffic is

more likely to come from mobile web browsers. Thus, a region that is

geographically close to more developing countries might have significantly

more mobile traffic than your test or canary regions.

Another example might be input language. Regions in non-English

speaking areas of the world might send more Unicode characters that could

manifest bugs in string or character handling. If you are building an API-

driven service, some APIs might be more popular in some regions versus

others. All of these things are examples of differences that might be present

in your application and might be different than your canary traffic. Each of

these differences is a possible source of a production incident. Build a table

of different characteristics that you think are important. Identifying these

characteristics will help you plan your global rollout.

Constructing a Global Rollout

Having identified the characteristics of your regions, you want to identify a

plan for rolling out to all regions. Obviously, you want to minimize the

impact of a production outage, so a great first region to start with is a region

that looks mostly like your canary and has light user traffic. Such a region is

very unlikely to have problems, but if they do occur, the impact is also

smaller because the region receives less traffic.

With a successful rollout to the first production region, you need to decide

how long to wait before moving on to the next region. The reason for

waiting is not to artificially delay your release; rather, it’s to wait long

enough for a fire to send up smoke. This time-to-smoke period is a measure

of generally how long it takes between a rollout completing and your

monitoring seeing some sign of a problem. Clearly if a rollout contains a

problem, the minute the rollout completes, the problem is present in your

infrastructure. But even though it is present, it can take some time to

manifest. For example, a memory leak might take an hour or more before

the impact of the leaked memory is clearly discernible in monitoring or is

affecting users. The time-to-smoke is the probability distribution that

indicates how long you should wait in order to have a strong probability

that your release is operating correctly. Generally speaking, a decent rule of

thumb is doubling the average time it took for a problem to manifest in the

past.

If, over the past six months, each outage took an average of an hour to show

up, waiting two hours between regional rollouts gives you a decent

probability that your release is successful. If you want to derive richer (and

more meaningful) statistics based on the history of your application, you

can estimate this time-to-smoke even more closely.

Having successfully rolled out to a canary-like, low-traffic region, it’s time

to roll out to a canary-like, high-traffic region. This is a region where the

input data looks like that in your canary, but it receives a large volume of

traffic. Because you successfully rolled out to a similar looking region with

lower traffic, at this point the only thing you are testing is your application’s

ability to scale. If you safely perform this rollout, you can have strong

confidence in the quality of your release.

After you have rolled out to a high-traffic region receiving canary-like

traffic, you should follow the same pattern for other potential differences in

traffic. For example, you might roll out to a low-traffic region in Asia or

Europe next. At this point, it might be tempting to accelerate your rollout,

but it is critically important to roll out only to a single region that represents

any significant change in either input or load to your release. After you are

confident that you have tested all of the potential variability in the

production input to your application, you then can start parallizing the

release to speed it up with strong confidence that it is operating correctly

and your rollout can complete successfully.

When Something Goes Wrong

So far, we have seen the pieces that go into setting up a worldwide rollout

for your software system, and we have seen the ways that you can structure

this rollout to minimize the chances that something goes wrong. But what

do you do when something actually does go wrong? All emergency

responders know that in the heat and panic of a crisis, your brain is

significantly stressed and it is much more difficult to remember even the

simplest processes. Add to this pressure the knowledge that when an outage

happens, everyone in the company from the CEO down is going to be

feverishly waiting for the “all clear” signal, and you can see how easy it is

to make a mistake under this pressure. Additionally, in such circumstances,

a simple mistake, like forgetting a particular step in a recovery process, or

rolling out a “fixed” build that actually has more problems, can make a bad

situation an order of magnitude worse.

For all of these reasons, it is critical that you are capable of responding

quickly, calmly, and correctly when a problem happens with a rollout. To

ensure that everything necessary is done, and done in the correct order, it

pays to have a clear checklist of tasks organized in the order in which they

are to be executed as well as the expected output for each step. Write down

every step, no matter how obvious it might seem. In the heat of the moment,

even the most obvious and easy steps can be the ones that are forgotten and

accidentally skipped.

The way that other first responders ensure a correct response in a high-

stress situation is to practice that response without the stress of the

emergency. The same practice applies to all the activities that you might

take in response to a problem with your rollout. You begin by identifying all

of the steps needed to respond to an issue and perform a rollback. Ideally,

the first response is to “stop the bleeding,” to move user traffic away from

the impacted region(s) and into a region where the rollout hasn’t happened

and your system is operating correctly. This is the first thing you should

practice. Can you successfully direct traffic away from a region? How long

does it take?

The first time you attempt to move traffic using a DNS-based traffic load

balancer, you will realize just how long and in how many ways our

computers cache DNS entries. It can take nearly a day to fully drain traffic

away from a region using a DNS-based traffic shaper. Regardless of how

your first attempt to drain traffic goes, take notes. What worked well? What

went poorly? Given this data, set a goal for how long a traffic drain should

take in terms of time to drain a percentage of traffic, for example, being

able to drain 99% of traffic in less than 10 minutes. Keep practicing until

you can achieve that goal. You might need to make architectural changes to

make this possible. You might need to add automation so that humans aren’t

cutting and pasting commands. Regardless of necessary changes, practice

will ensure that you are more capable at responding to an incident and that

you will learn where your system design needs to be improved.

The same sort of practice applies to every action that you might take on

your system. Practice a full-scale data recovery. Practice a global rollback

of your system to a previous version. Set goals for the length of time it

should take. Note any places where you made mistakes, and add validation

and automation to eliminate the possibility of mistakes. Achieving your

incident reaction goals in practice gives you confidence that you will be

able to respond correctly in a real incident. But just like every emergency

responder continues to train and learn, you too need to set up a regular

cadence of practice to ensure that everyone on a team stays well versed in

the proper responses and (perhaps more important) that your responses stay

up to date as your system changes.

Worldwide Rollout Best Practices

Distribute each image around the world. A successful rollout depends on

the release bits (binaries, images, etc.) being nearby to where they will

be used. This also ensures reliability of the rollout in the presence of

networking slowdowns or irregularities. Geographic distribution should

be a part of your automated release pipeline for guaranteed consistency.

Shift as much of your testing as possible to the left by having as much

extensive integration and replay testing of your application as possible.

You want to start a rollout only with a release that you strongly believe

to be correct.

Begin a release in a canary region, which is a preproduction environment

in which other teams or large customers can validate their use of your

service before you begin a larger-scale rollout.

Identify different characteristics of the regions where you are rolling out.

Each difference can be one that causes a failure and a full or partial

outage. Try to roll out to low-risk regions first.

Document and practice your response to any problem or process (e.g., a

rollback) that you might encounter. Trying to remember what to do in the

heat of the moment is a recipe for forgetting something and making a

bad problem worse.

Summary

It might seem unlikely today, but most of us will end up running a

worldwide scale system sometime during our careers. This chapter

described how you can gradually build and iterate your system to be a truly

global design. It also discussed how you can set up your rollout to ensure

minimal downtime of the system while it is being updated. Finally, we

covered setting up and practicing the processes and procedures necessary to

react when (note that we didn’t say “if”) something goes wrong.

Chapter 8. Networking, Network Security, and
Service Mesh

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 9th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

Kubernetes is effectively a manager of distributed systems across a cluster

of connected systems. This immediately puts critical importance on how the

connected systems communicate with one another, and networking is the

key to this. Understanding how Kubernetes facilitates communication

among the distributed services it manages is important for the effective

application of interservice communication.

This chapter focuses on the principles that Kubernetes places on the

network and best practices around applying these concepts in different

situations. With any discussion of networking, security is usually brought

along for the ride. The traditional models of network security boundaries

being controlled at the network layer are not absent in this new world of

distributed systems in Kubernetes, but how they are implemented and the

capabilities offered change slightly. Kubernetes brings along a native API

for network security policies that will sound eerily similar to firewall rules

of old.

The last section of this chapter delves into the new and scary world of

service meshes. The term “scary” is used in jest, but it is quite the Wild

West when it comes to service mesh technology in Kubernetes.

Kubernetes Network Principles

Understanding how Kubernetes uses the underlying network to facilitate

communication among services is critical to understanding how to

effectively plan application architectures. Usually, networking topics start to

give most people major headaches. We are going to keep this rather simple

because this is more of a best practice guidance than a lesson on container

networking. Luckily for us, Kubernetes has laid down some rules of the

road for networking that help to give us a start. The rules outline how

communication is expected to behave between different components. Let’s

take a closer look at each of these rules:

Container-to-container communication in the same pod

All containers in the same pod share the same network space. This

effectively allows localhost communication between the containers. It

also means that containers in the same pod need to expose different

ports. This is done using the power of Linux namespaces and Docker

networking to allow these containers to be on the same local network

through the use of a paused container in every pod that does nothing but

host the networking for the pod. Figure 8-1 shows how Container A can

communicate directly with Container B using localhost and the port

number that the container is listening on.

Figure 8-1. Intrapod communication between containers

Pod-to-pod communication

All pods need to communicate with one another without any network

address translation (NAT). This means that the IP address that a pod is

seen as by the receiving pod is the sender’s actual IP address. This is

handled in different ways, depending on the network plug-in used, which

we discuss in more detail later in the chapter. This rule is true between

pods on the same node and pods that are on different nodes in the same

cluster. This also extends to the node being able to communicate directly

to the pod with no NAT involved. This allows host-based agents or

system daemons to communicate to the pods as needed. Figure 8-2 is a

representation of the communication processes between pods in the same

node and pods in different nodes of the cluster.

Figure 8-2. Pod to pod communication intra- and internode

Service-to-pod communication

Services in Kubernetes represent a durable IP address and port that is

found on each node that will forward all traffic to the endpoints that are

mapped to the service. Over the different iterations of Kubernetes, the

method in favor of enabling this has changed, but the two main methods

are via the use of iptables or the newer IP Virtual Server (IPVS) and

some cloud providers and more advanced implementations allow for a

new eBPF based dataplane. Most implementations today use the iptables

implementation to enable a pseudo-Layer 4 load balancer on each node.

Figure 8-3 is a visual representation of how the service is tied to the pods

via label selectors.

Figure 8-3. Service to pod communication

Network Plug-ins

Early on, the Special Interest Group (SIG) guided the networking standards

to more of a pluggable architecture, which opened the door for numerous

third-party networking projects, which in many cases injected value-added

capabilities into Kubernetes workloads. These network plug-ins come in

two flavors. The most basic is called Kubenet and is the default plug-in

provided by Kubernetes natively. The second type of plug-in follows the

Container Network Interface (CNI) specification, which is a generic plug-in

network solution for containers.

Kubenet

Kubenet is the most basic network plug-in that comes out of the box in

Kubernetes. It is the simplest of the plug-ins and provides a Linux bridge,

cbr0 , that’s a virtual Ethernet pair for the pods connected to it. The pod

then gets an IP address from a Classless Inter-Domain Routing (CIDR)

range that is distributed across the nodes of the cluster. There is also an IP

masquerade flag that should be set to allow traffic destined to IPs outside

the pod CIDR range to be masqueraded. This obeys the rules of pod-to-pod

communication because only traffic destined outside the pod CIDR

undergoes network address translation (NAT). After the packet leaves a

node to go to another node, some kind of routing is put in place to facilitate

the process to forward the traffic to the correct node.

Kubenet Best Practices

Kubenet allows for a simplistic network stack and does not consume

precious IP addresses on already crowded networks. This is especially

true of cloud networks that are extended to on-premises datacenters.

Ensure that the pod CIDR range is large enough to handle the potential

size of the cluster and the pods in each cluster. The default pods per node

set in kubelet is 110, but you can adjust this.

Understand and plan accordingly for the route rules to properly allow

traffic to find pods in the proper nodes. In cloud providers, this is usually

automated, but on-premises or edge cases will require automation and

solid network management.

The CNI Plug-in

The CNI plug-in has some basic requirements set aside by the specification.

These specifications dictate the interfaces and minimal API actions that the

CNI offers and how it will interface with the container runtime that is used

in the cluster. The network management components are defined by the

CNI, but they all must include some type of IP address management and

minimally allow for the addition and deletion of a container to a network.

The full original specification that was originally derived from the rkt

networking proposal is available.

The Core CNI project provides libraries that you can use to write plug-ins

that provide the basic requirements and that can call other plug-ins that

perform various functions. This adaptability led to numerous CNI plug-ins

that you can use in container networking from cloud providers like the

Microsoft Azure native CNI and the Amazon Web Services (AWS) VPC

CNI plug-in, to traditional network providers such as Nuage CNI, Juniper

Networks Contrail/Tunsten Fabric, and VMware NSX.

CNI Best Practices

Networking is a critical component of a functioning Kubernetes

environment. The interaction between the virtual components within

Kubernetes and the physical network environment should be carefully

designed to ensure dependable application communication:

1. Evaluate the feature set needed to accomplish the overall networking

goals of the infrastructure. Some CNI plug-ins provide native high

availability, multicloud connectivity, Kubernetes network policy support,

and various other features.

2. If you are running clusters via public cloud providers, verify that any

CNI plug-ins that are not native to the cloud provider’s Software-

Defined Network (SDN) are actually supported.

3. Verify that any network security tools, network observability, and

management tools are compatible with the CNI plug-in of choice, and if

not, research which tools can replace the existing ones. It is important to

not lose either observability or security capabilities because the needs

will be expanded when moving to a large-scale distributed system such

as Kubernetes. You can add tools like Weaveworks Weave Scope,

Dynatrace, and Sysdig to any Kubernetes environment, and each offers

its own benefits. If you’re running in a cloud provider’s managed

service, such as Azure AKS, Google GCE, or AWS EKS, look for native

tools like Azure Container Insights and Network Watcher, Google

Logging and Monitoring, and AWS CloudWatch. Whatever tool you use,

it should at least provide insight into the network stack and the Four

Golden signals, made popular by the amazing Google SRE team and

Rob Ewashuck: Latency, Traffic, Errors, and Saturation.

4. If you’re using CNIs that do not provide an overlay network separate

from the SDN network space, ensure that you have proper network

address space to handle node IPs, pod IPs, internal load balancers, and

overhead for cluster upgrade and scale out processes.

Services in Kubernetes

When pods are deployed into a Kubernetes cluster, because of the basic

rules of Kubernetes networking and the network plug-in used to facilitate

these rules, pods can directly communicate only with other pods within the

same cluster. Some CNI plug-ins give the pods IPs on the same network

space as the nodes, so technically, after the IP of a pod is known, it can be

accessed directly from outside the cluster. This, however, is not an efficient

way to access services being served by a pod, because of the ephemeral

nature of pods in Kubernetes. Imagine that you have a function or system

that needs to access an API that is running in a pod in Kubernetes. For a

while, that might work with no issue, but at some point there might be a

voluntary or involuntary disruption that will cause that pod to disappear.

Kubernetes will potentially create a replacement pod with a new name and

IP address, so naturally there needs to be some mechanism to find the

replacement pod. This is where the service API comes to the rescue.

The service API allows for a durable IP and port to be assigned within the

Kubernetes cluster and automatically mapped to the proper pods as

endpoints to the service. This magic happens through the aforementioned

iptables or IPVS on Linux nodes to create a mapping of the assigned service

IP and port to the endpoint’s or pod’s actual IPs. The controller that

manages this is called the kube-proxy service, which actually runs on

each node in the cluster. It is responsible for manipulating the iptables rules

on each node.

When a service object is defined, the type of service needs to be defined.

The service type will dictate whether the endpoints are exposed only within

the cluster or outside of the cluster. There are four basic service types that

we will discuss briefly in the following sections.

Service Type ClusterIP

ClusterIP is the default service type if one is not declared in the

specification. ClusterIP means that the service is assigned an IP from a

designated service CIDR range. This IP is as long lasting as the service

object, so it provides an IP and port and protocol mapping to backend pods

using the selector field; however, as we will see, there are cases for which

you can have no selector. The declaration of the service also provides for a

Domain Name System (DNS) name for the service. This facilitates service

discovery within the cluster and allows for workloads to easily

communicate to other services within the cluster by using DNS lookup

based on the service name. As an example, if you have the service

definition shown in the following example and need to access that service

from another pod inside the cluster via an HTTP call, the call can simply

use http://web1-svc if the client is in the same namespace as the service:

apiVersion: v1
kind: Service
metadata:
 name: web1-svc
spec:
 selector:
 app: web1
 ports:
 - port: 80
 targetPort: 8081

If it is required to find services in other namespaces, the DNS pattern would

be <service_name>.

<namespace_name>.svc.cluster.local .

If no selector is given in a service definition, the endpoints can be explicitly

defined for the service by using an endpoint API definition. This will

basically add an IP and port as a specific endpoint to a service instead of

relying on the selector attribute to automatically update the endpoints from

the pods that are in scope by the selector match. This can be useful in a few

scenarios in which you have a specific database that is not in a cluster that

is to be used for testing but you will change the service later to a

Kubernetes-deployed database. This is sometimes called a headless service

because it is not managed by kube-proxy as other services are, but you

can directly manage the endpoints, as shown in Figure 8-4.

Figure 8-4. ClusterIPPod and Service visualization

Service Type NodePort

The NodePort service type assigns a high-level port on each node of the

cluster to the Service IP and port on each node. The high-level NodePorts

fall within the 30,000 through 32,767 ranges and can either be statically

assigned or explicitly defined in the service specification. NodePorts are

usually used for on-premises clusters or bespoke solutions that do not offer

automatic load-balancing configuration. To directly access the service from

outside the cluster, use NodeIP:NodePort, as depicted in Figure 8-5.

Figure 8-5. NodePort–Pod, Service and Host network visualization

Service Type ExternalName

The ExternalName service type is seldom used in practice, but it can be

helpful for passing cluster-durable DNS names to external DNS named

services. A common example is an external database service from a cloud

provider that has a unique DNS provided by the cloud provider, such as

mymongodb.documents.azure.com . Technically, this can be added

very easily to a pod specification using an Environment variable, as

discussed in Chapter 6; however, it might be more advantageous to use a

more generic name in the cluster, such as prod-mongodb , which

enables the change of the actual database it points to by just changing the

service specification instead of having to recycle the pods because the

Environment variable has changed:

kind: Service
apiVersion: v1
metadata:
 name: prod-mongodb
 namespace: prod
spec:
 type: ExternalName
 externalName: mymongodb.documents.azure.com

Service Type LoadBalancer

LoadBalancer is a very special service type because it enables automation

with cloud providers and other programmable cloud infrastructure services.

The LoadBalancer type is a single method to ensure the deployment of

the load-balancing mechanism that the infrastructure provider of the

Kubernetes cluster provides. This means that in most cases,

LoadBalancer will work roughly the same way in AWS, Azure, GCE,

OpenStack, and others. In most cases, this entry will create a public-facing

load-balanced service; however, each cloud provider has some specific

annotations that enable other features, such as internal-only load balancers,

AWS ELB configuration parameters, and so on. You can also define the

actual load-balancer IP to use and the source ranges to allow within the

service specification, as seen in the code sample that follows and the visual

representation in Figure 8-6:

kind: Service
apiVersion: v1
metadata:
 name: web-svc
spec:
 type: LoadBalancer
 selector:
 app: web
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8081
 loadBalancerIP: 13.12.21.31
 loadBalancerSourceRanges:
 - "142.43.0.0/16"

Figure 8-6. LoadBalancer–Pod, Service, Node, and Cloud Provider network visualization

Ingress and Ingress Controllers

Although not technically a service type in Kubernetes, the Ingress

specification is an important concept for ingress to workloads in

Kubernetes. Services, as defined by the Service API, allow for a basic level

of Layer 3/4 load balancing. The reality is that many of the stateless

services that are deployed in Kubernetes require a high level of traffic

management and usually require application-level control: more

specifically, HTTP protocol management.

The Ingress API is basically an HTTP-level router that allows for host- and

path-based rules to direct to specific backend services. Imagine a website

hosted on www.evillgenius.com and two different paths that are hosted on

that site, /registration and /labaccess, that are served by two different

services hosted in Kubernetes, reg-svc and labaccess-svc . You

can define an ingress rule to ensure that requests to

www.evillgenius.com/registration are forwarded to the reg-svc service

and the correct endpoint pods, and, similarly, that requests to

www.evillgenius.com/labaccess are forwarded to the correct endpoints of

the labaccess-svc service. The Ingress API also allows for host-

based routing to allow for different hosts on a single ingress. An additional

feature is the ability to declare a Kubernetes secret that holds the certificate

information for Transport Layer Security (TLS) termination on port 443.

When a path is not specified, there is usually a default backend that can be

used to give a better user experience than the standard 404 error.

The details around the specific TLS and default backend configuration are

actually handled by what is known as the Ingress controller. The Ingress

controller is decoupled from the Ingress API and allows for operators to

deploy an Ingress controller of choice, such as NGINX, Traefik, HAProxy,

and others. An Ingress controller, as the name suggests, is a controller, just

like any Kubernetes controller, but it’s not part of the system and is instead

a third-party controller that understands the Kubernetes Ingress API for

dynamic configuration. The most common implementation of an Ingress

controller is NGINX because it is partly maintained by the Kubernetes

project; however, there are numerous examples of both open source and

commercial Ingress controllers:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: labs-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 tls:
 - hosts:
 - www.evillgenius.com
 secretName: secret-tls
 rules:
 - host: www.evillgenius.com
 http:

paths:

Gateway API

The Ingress API has had some challenges over the years it was in beta and

following its v1 promotion. These challenges have led to other network

services offering different abstractions through the use of Custom Resource

Defintions and controllers to create their own APIs that fill some of the

gaps Ingress has had. Some of the most common challenges with the

Ingress API have been:

The lack of expresiveness in the definition as it represents the lowest

common denominator for the capabilities of the particular Ingress

implmentation.

 paths:
 - path: /registration
 pathType: ImplementationSpecific
 backend:
 service:
 name: reg-svc
 port:
 number: 8088
 - path: /labaccess
 pathType: ImplementationSpecific
 backend:
 service:
 name: labaccess-svc
 port:
 number: 8089

A general lack of extensibility in the architecture. Vendors have used

countless annotations to expose specific implementation capabilities

however this has some limitations.

The use of vendor specific annotations have removed some of the

portability promised by the API. An annotation to expose a capability in

an NGINX based Ingress Controller may be different or expressed

differently from a Kong based controller implementation.

There is no formal way to do multi-tenancy with the current Ingress API

and DevOps teams have to create very tight controls to prevent path

conflicts between Ingress definitions that could impact other tenants in

the same cluster.

The Gateway API was introduced in 2019 and is currently managed as a

project by the SIG Network team under the Kubernetes Project. The

Gateway API does not intend to replace the Ingress API as it primarily

targets exposing HTTP applications with a declarative syntax. Gateway API

exposes a more general API for proxying for many types of protocols, and

fits a more role based management process because it models more closely

the infrastructure components in the environment.

Figure 8-7. Gateway API Structure

This role based paradigm is very important in answering some of the

shortcomings of the existing Ingress API. The separate components allow

for infrastructure providers such as cloud providers, proxy ISVs, to define

the infrastructure and platform operators to define through policy what

infrastructure can be used and the developers to worry about how they want

to expose their services within the constraints that are given to them. This

abstracts away from the developer the infrastructure services and

capabilities and allows them to focus on their specific service needs.

Figure 8-8. Gateway API Structure

The specification is very promising and many of the leading providers of

proxies and services meshes as well as Cloud Providers have begun to

implement into their stack the Gateway API. Google’s GKE, Acnodeal

EPIC, Contour, Apache APISIX and others have begun to offer limited

preview or alpha support and the API itself is in beta for the GatewayClass,

Gateway and HTTPRoute resources as of this writing and others are in

Alpha support. Unlike the Ingress API this is a custom resource that can be

added to any cluster and therefore does not follow the Kubernetes Alpha or

beta release process.

Services and Ingress Controllers Best Practices

Creating a complex virtual network environment with interconnected

applications requires careful planning. Effectively managing how the

different services of the application communicate with one another and to

the outside world requires constant attention as the application changes.

These best practices will help make the management easier:

Limit the number of services that need to be accessed from outside the

cluster. Ideally, most services will be ClusterIP, and only external-facing

services will be exposed externally to the cluster.

If the services that need to be exposed are primarily HTTP/HTTPS-

based services, it is best to use an Ingress API and Ingress controller to

route traffic to backing services with TLS termination. Depending on the

type of Ingress controller used, features such as rate limiting, header

rewrites, OAuth authentication, observability, and other services can be

made available without having to build them into the applications

themselves.

Choose an Ingress controller that has the needed functionality for secure

ingress of your web-based workloads. Standardize on one and use it

across the enterprise because many of the specific configuration

annotations vary between implementations and prevent the deployment

code from being portable across enterprise Kubernetes implementations.

Evaluate cloud service provider-specific Ingress controller options to

move the infrastructure management and load of the ingress out of the

cluster, but still allow for Kubernetes API configuration.

When serving mostly APIs externally, evaluate API-specific Ingress

controllers, such as Kong or Ambassador, that have more fine-tuning for

API-based workloads. Although NGINX, Traefik, and others might offer

some API tuning, it will not be as fine-grained as specific API proxy

systems.

When deploying Ingress controllers as pod-based workloads in

Kubernetes, ensure that the deployments are designed for high

availability and aggregate performance throughput. Use metrics

observability to properly scale the ingress, but include enough cushion to

prevent client disruptions while the workload scales.

Network Security Policy

The NetworkPolicy API built into Kubernetes allows for network-level

ingress and egress access control defined with your workload. Network

policies allow you to control how groups of pods are allowed to

communicate with one another and with other endpoints. If you want to dig

deeper into the NetworkPolicy specification, it might sound confusing,

especially given that it is defined as a Kubernetes API, but it requires a

network plug-in that supports the NetworkPolicy API.

Network policies have a simple YAML structure that can look complicated,

but if you think of it as a simple East-West traffic firewall, it might help you

to understand it a little better. Each policy specification has

podSelector , ingress , egress , and policyType fields. The

only required field is podSelector , which follows the same convention

as any Kubernetes selector with a matchLabels . You can create

multiple NetworkPolicy definitions that can target the same pods, and the

effect is additive in nature. Because NetworkPolicy objects are namespaced

objects, if no selector is given for a podSelector , all pods in the

namespace fall into the scope of the policy. If there are any ingress or egress

rules defined, this creates a whitelist of what is allowed to or from the pod.

There is an important distinction here: if a pod falls into the scope of a

policy because of a selector match, all traffic, unless explicitly defined in an

ingress or egress rule, is blocked. This little, nuanced detail means that if a

pod does not fall into any policy because of a selector match, all ingress and

egress is allowed to the pod. This was done on purpose to allow for ease of

deploying new workloads into Kubernetes without any blockers.

The ingress and egress fields are basically a list of rules based on

source or destination and can be specific CIDR ranges, podSelector s,

or namespaceSelector s. If you leave the ingress field empty, it is like

a deny-all inbound. Similarly, if you leave the egress empty, it is deny-all

outbound. Port and protocol lists are also supported to further tighten down

the type of communications allowed.

The policyTypes field specifies to which network policy rule types the

policy object is associated. If the field is not present, it will just look at the

ingress and egress lists fields. The difference again is that you must

explicitly call out egress in policyTypes and also have an egress rule

list for this policy to work. Ingress is assumed, and defining it explicitly is

not needed.

Let’s use a prototypical example of a three-tier application deployed to a

single namespace where the tiers are labeled as tier: "web" , tier:

"db" , and tier: "api" . If you want to ensure that traffic is limited to

each tier properly, create a NetworkPolicy manifest like this:

Default deny rule:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: default-deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress

Web layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: webaccess
spec:
 podSelector:
 matchLabels:
 tier: "web"
 policyTypes:
 - Ingress
 ingress:
 - {}

API layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-api-access
spec:

 podSelector:
 matchLabels:
 tier: "api"
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 tier: "web"

Database layer network policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-db-access
spec:
 podSelector:
 matchLabels:
 tier: "db"
 policyTypes:
 - Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 tier: "api"

Network Policy Best Practices

Securing network traffic in an enterprise system was once the domain of

physical hardware devices with complex networking rule sets. Now, with

Kubernetes network policy, a more application-centric approach can be

taken to segment and control the traffic of the applications hosted in

Kubernetes. Some common best practices apply no matter which policy

plug-in used:

1. Start off slow and focus on traffic ingress to pods. Complicating matters

with ingress and egress rules can make network tracing a nightmare. As

soon as traffic is flowing as expected, you can begin to look at egress

rules to further control flow to sensitive workloads. The specification

also favors ingress because it defaults many options even if nothing is

entered into the ingress rules list.

2. Ensure that the network plug-in used either has some of its own interface

to the NetworkPolicy API or supports other well-known plug-ins.

Example plug-ins include Calico, Cilium, Kube-router, Romana, and

Weave Net.

3. If the network team is used to having a “default-deny” policy in place,

create a network policy such as the following for each namespace in the

cluster that will contain workloads to be protected. This ensures that

even if another network policy is deleted, no pods are accidentally

“exposed”:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

metadata:
 name: default-deny-all
spec:
 podSelector: {}
 policyTypes:
 - Ingress

4. If there are pods that need to be accessed from the internet, use a label to

explicitly apply a network policy that allows ingress. Be aware of the

entire flow in case the actual IP that a packet is coming from is not the

internet, but the internal IP of a load balancer, firewall, or other network

device. For example, to allow traffic from all (including external)

sources for pods having the allow-internet=true label, do this:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: internet-access
spec:
 podSelector:
 matchLabels:
 allow-internet: "true"
 policyTypes:
 - Ingress
 ingress:
 - {}

5. Try to align application workloads to single namespaces for ease of

creating rules because the rules themselves are namespace specific. If

cross-namespace communication is needed, try to be as explicit as

possible and perhaps use specific labels to identify the flow pattern:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: namespace-foo-2-namespace-bar
 namespace: bar
spec:
 podSelector:
 matchLabels:
 app: bar-app
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 networking/namespace: foo
 podSelector:
 matchLabels:
 app: foo-app

6. Have a test bed namespace that has fewer restrictive policies, if any at

all, to allow time to investigate the correct traffic patterns needed.

Service Meshes

It is easy to imagine a single cluster hosting hundreds of services that load-

balance across thousands of endpoints that communicate with one another,

access external resources, and potentially are being accessed from external

sources. This can be quite daunting when trying to manage, secure, observe,

and trace all of the connections between these services, especially with the

dynamic nature of the endpoints coming and going from the overall system.

The concept of a service mesh, which is not unique to Kubernetes, allows

for control over how these services are connected and secured with a

dedicated date plane and control plane. Service meshes all have different

capabilities, but usually they all offer some of the following:

Load balancing of traffic with potentially fine-grained traffic-shaping

policies that are distributed across the mesh.

Service discovery of services that are members of the mesh, which might

include services within a cluster or in another cluster, or an outside

system that is a member of the mesh.

Observability of the traffic and services, including tracing across the

distributed services using tracing systems like Jaeger or Zipkin that

follow the OpenTracing standards.

Security of the traffic in the mesh using mutual authentication. In some

cases, not only pod-to-pod or East-West traffic is secured, but an Ingress

controller is also provided that offers North-South security and control.

Resiliency, health, and failure-prevention capabilities that allow for

patterns such as circuit breaker, retries, deadlines, and so on.

The key here is that all of these features are integrated into the applications

that take part in the mesh with little or no application changes. How can all

of these amazing features come for free? Sidecar proxies are usually the

way this is done. The majority of service meshes available today inject a

proxy that is part of the data plane into each pod that is a member of the

mesh. This allows for policies and security to be synchronized across the

mesh by the control-plane components. This really hides the network details

from the container that holds the workload and leaves it to the proxy to

handle the complexity of the distributed network. To the application, it just

talks via localhost to its proxy. In many cases, the control plane and data

plane might be different technologies but complementary to each other.

In many cases, the first service mesh that comes to mind is Istio, a project

by Google, Lyft, and IBM that uses Envoy as its data-plane proxy and uses

proprietary control-plane components Mixer, Pilot, Galley, and Citadel.

There are other service meshes that offer varying levels of capabilities, such

as Linkerd2, which uses its own data-plane proxy built using Rust.

HashiCorp has recently added more Kubernetes-centric service mesh

capabilities to Consul, which allows you to choose between Consul’s own

proxy or Envoy, and offers commercial support for its service mesh.

The topic of service meshes in Kubernetes is a fluid one—if not overly

emotional in many social media tech circles—so a detailed explanation of

each mesh has no value here. I would be remiss if I did not mention the

promising efforts lead by Microsoft, Linkerd, HashiCorp, Solo.io, Kinvolk,

and Weaveworks around the Service Mesh Interface (SMI). The SMI hopes

to set a standard interface for basic feature sets that are expected of all

service meshes. The specification as of this writing covers traffic policy

such as identity and transport-level encryption, traffic telemetry that

captures key metrics between services in the mesh, and traffic management

to allow for traffic shifting and weighting between different services. This

project hopes to take some of the variability out of the service meshes yet

allow for service mesh vendors to extend and build value-added capabilities

into their products to differentiate themselves from others.

Service Mesh Best Practices

The service mesh community continues to grow every day, and as more and

more enterprises help define their needs, the service mesh ecosystem will

change dramatically. These best practices are, as of this writing, based on

common necessities that service meshes try to solve today:

Rate the importance of the key features service meshes offer and

determine which current offerings provide the most important features

with the least amount of overhead. Overhead here is both human

technical debt and infrastructure resource debt. If all that is really

required is mutual TLS between certain pods, would it be easier to

perhaps find a CNI that offers that integrated into the plug-in?

Is the need for a cross-system mesh such as multicloud or hybrid

scenarios a key requirement? Not all service meshes offer this capability,

and if they do, it is a complicated process that often introduces fragility

into the environment.

Many of the service mesh offerings are open source community-based

projects, and if the team that will be managing the environment is new to

service meshes, commercially supported offerings might be a better

option. There are companies that are beginning to offer commercially

supported and managed service meshes based on Istio, which can be

helpful because it is almost universally agreed upon that Istio is a

complicated system to manage.

Summary

In addition to application management, one of the most important things

that Kubernetes provides is the ability to link different pieces of your

application together. In this chapter, we looked at the details of how

Kubernetes works, including how pods get their IP addresses through CNI

plug-ins, how those IPs are grouped together to form services, and how

more application or Layer 7 routing can be implemented via Ingress

resources (which in turn use services). You also saw how to limit traffic and

secure your network using networking policies, and, finally, how service

mesh technologies are transforming the ways in which people connect and

monitor the connections between their services. In addition to setting up

your application to run and be deployed reliably, setting up the networking

for your application is a crucial piece of using Kubernetes successfully.

Understanding how Kubernetes approaches networking and how that

intersects optimally with your application is a critical piece of its ultimate

success.

Chapter 9. Policy and Governance for Your
Cluster

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 11th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

Have you ever wondered how you might ensure that all containers running

on a cluster come only from an approved container registry? Or maybe

you’ve been asked by the security team to enforce that services are never

exposed to the internet. These are precisely the challenges that policy and

governance for your cluster set out to address. As Kubernetes continues to

mature and becomes adopted by more enterprises, the question of how to

apply policy and governance to Kubernetes resources is becoming

increasingly frequent. In this chapter we share what you can do and the

tools to use to make sure that your cluster is in compliance with the defined

policies whether your work at a startup or enterprise.

Why Policy and Governance Are Important

Whether you operate in a highly regulated environment—for example,

health care or financial services—or you simply want to make sure that you

maintain a level of control over what’s running on your clusters, you’re

going to need a way to implement the company specific policies. Once

defined, you will need to determine how to implement policy and maintain

clusters that are compliant to these policies. These policies may be required

to meet regulatory compliance or simply to enforce best practices.

Whatever the reason, you must be sure that you do not sacrifice developer

agility and self-service when implementing these policies.

How Is This Policy Different?

In Kubernetes, policy is everywhere. Whether it be network policy or pod

security, we’ve all come to understand what policy is and when to use it.

We trust that whatever is declared in Kubernetes resource specifications is

implemented as per the policy definition. Both network policy and pod

security are implemented at runtime. However, what policy restricts the

field values in these Kubernetes resource specifications? That’s the job for

policy and governance. Rather than implementing policy at runtime, when

we talk about policy in the context of governance, what we mean is

defining policy that controls the fields and values in the Kubernetes

resource specifications themselves. Only Kubernetes resource specifications

that are compliant when evaluated by policies are allowed and committed to

the cluster state.

Cloud-Native Policy Engine

To be able to evalute which resources are compliant, we need a policy

engine that is flexible enough to meet a variety of needs. The Open Policy

Agent (OPA) is an open source, flexible, lightweight policy engine that has

become increasingly popular in the cloud-native ecosystem. Having OPA in

the ecosystem has allowed many implementations of different Kubernetes

governance tools to appear. One such Kubernetes policy and governance

project the community is rallying around is called Gatekeeper. For the rest

of this chapter, we use Gatekeeper as the canonical example to illustrate

how you might achieve policy and governance for your cluster. Although

there are other implementations of policy and governance tools in the

ecosystem, they all seek to provide the same user experience (UX) by

allowing only compliant Kubernetes resource specifications to be

committed to the cluster.

Introducing Gatekeeper

Gatekeeper is an open source customizable Kubernetes admission webhook

for cluster policy and governance. Gatekeeper takes advantage of the OPA

constraint framework to enforce custom resource definition (CRD)-based

policies. Using CRDs allows for an integrated Kubernetes experience that

decouples policy authoring from implementation. Policy templates are

referred to as constraint templates, which can be shared and reused across

clusters. Gatekeeper enables resource validation and audit functionality.

One of the great things about Gatekeeper is that it’s portable, which means

that you can implement it on any Kubernetes clusters, and if you are already

using OPA, you might be able to port that policy over to Gatekeeper.

NOTE

Gatekeeper is a production ready open source project. For the latest stable version,

please visit the official upstream repository.

Example Policies

Before diving into how to configure Gatekeeper, it’s important to keep the

problem we are trying to solve in focus. Let’s take a look at some policies

that solve some of the most common compliance issues for context:

Services must not be exposed publicly on the internet.

Allow containers only from trusted container registries.

All containers must have resource limits.

Ingress hostnames must not overlap.

Ingresses must use only HTTPS.

Gatekeeper Terminology

Gatekeeper has adopted much of the same terminology as OPA. It’s

important that we cover what that terminology is so that you can understand

how Gatekeeper operates. Gatekeeper uses the OPA constraint framework.

Here, we introduce three new terms:

Constraint

Rego

Constraint template

Constraint

The best way to think about constraints is as restrictions that you apply to

specific fields and values of Kubernetes resource specifications. This is

really just a long way of saying policy. This means that when constraints

are defined, you are effectively stating that you DO NOT want to allow this.

The implications of this approach mean that resources are implicitly

allowed without a constraint that issues a deny. This is an important nuance

because rather then allowing the Kubernetes resources specification fields

and values you want, you are denying only the ones you DO NOT want.

This architectural decision suits Kubernetes resource specifications nicely

because they are ever changing.

Rego

Rego is an OPA-native query language. Rego queries are assertions on the

data stored in OPA. Gatekeeper stores rego in the constraint template.

Constraint template

You can think of this as a policy template. It’s portable and reusable.

Constraint templates consist of typed parameters and the target rego that is

parameterized for reuse.

Defining Constraint Templates

Constraint templates are a Custom Resource Definition (CRD) that provide

a means of templating policy so that it can be shared or reused. In addition,

parameters for the policy can be validated. Let’s take a look at a constraint

template (from the upstream Gatekeeper policy library -

https://github.com/open-policy-agent/gatekeeper-library) in the context of

the earlier examples. In the following example, we share a constraint

template that provides the policy “Only allow containers from trusted

container registries”:

apiVersion: templates.gatekeeper.sh/v1
kind: ConstraintTemplate
metadata:
 name: k8sallowedrepos
 annotations:
 metadata.gatekeeper.sh/title: "Allowed Reposi

 metadata.gatekeeper.sh/version: 1.0.0
 description: >-
 Requires container images to begin with a s
spec:
 crd:
 spec:
 names:
 kind: K8sAllowedRepos
 validation:
 # Schema for the `parameters` field
 openAPIV3Schema:
 type: object
 properties:
 repos:
 description: The list of prefixes a
 type: array
 items:
 type: string
 targets:
 - target: admission.k8s.gatekeeper.sh

 rego: |
 package k8sallowedrepos

 violation[{"msg": msg}] {
 container := input.review.object.spec.c
 satisfied := [good | repo = input.param
 not any(satisfied)
 msg := sprintf("container <%v> has an i
 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.i
 satisfied := [good | repo = input.param
 not any(satisfied)
 msg := sprintf("initContainer <%v> has

}

The constraint template consists of three main components:

Kubernetes-required CRD metadata

The name is the most important part. We reference this later.

Schema for input parameters

Indicated by the validation field, this section defines the input

parameters and their associated types. In this example, we have a single

parameter called repo that is an array of strings.

Policy definition

Indicated by the target field, this section contains templated rego

(the language to define policy in OPA). Using a constraint template

allows the templated rego to be reused and means that generic policy can

be shared. If the rule matches, the constraint is violated.

Defining Constraints

 }

 violation[{"msg": msg}] {
 container := input.review.object.spec.e
 satisfied := [good | repo = input.param
 not any(satisfied)
 msg := sprintf("ephemeralContainer <%v>
 }

To use the previous constraint template, we must create a constraint

resource. The purpose of the constraint resource is to provide the necessary

parameters to the constraint template that we created earlier. You can see

that the kind of the resource defined in the following example is

K8sAllowedRepos , which maps to the constraint template defined in

the previous section:

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 name: prod-repo-is-openpolicyagent
spec:
 enforcementAction: deny
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Pod"]
 namespaces:
 - "production"
 parameters:
 repos:
 - "openpolicyagent/"

The constraint consists of two main sections:

Kubernetes metadata

Notice that this constraint is of kind K8sAllowedRepos , which

matches the name of the constraint template.

The spec

The match field defines the scope of intent for the policy. In this

example, we are matching pods only in the production namespace.

The parameters define the intent for the policy. Notice that they match

the type from the constraint template schema from the previous section.

In this case, we allow only container images that start with

openpolicyagent/ .

Constraints have the following operational characteristics:

Logically AND-ed together

When multiple policies validate the same field, if one violates then

the whole request is rejected

Schema validation that allows early error detection

Selection criteria

Can use label selectors

Constrain only certain kinds

Constrain only in certain namespaces

Data Replication

In some cases, you might want to compare the current resource against

other resources that are in the cluster, for example, in the case of “Ingress

hostnames must not overlap.” OPA needs to have all of the other Ingress

resources in its cache in order to evaluate the rule. Gatekeeper uses a

config resource to manage which data is cached in OPA in order to

perform evaluations such as the one previously mentioned. In addition,

config resources are also used in the audit functionality, which we

explore a bit later on.

The following example config resource caches v1 service, pods, and

namespaces:

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
name: config
 namespace: gatekeeper-system
spec:
 sync:
 syncOnly:
 - kind: Service
 version: v1
 - kind: Pod
 version: v1
 - kind: Namespace
 version: v1

UX

Gatekeeper enables real-time feedback to cluster users for resources that

violate defined policy. If we consider the example from the previous

sections, we allow containers only from repositories that start with

openpolicyagent/ .

Let’s try to create the following resource; it is not compliant given the

current policy:

apiVersion: v1
kind: Pod
metadata:
 name: opa
 namespace: production
spec:
 containers:
 - name: opa
 image: quay.io/opa:0.9.2

This gives you the violation message that’s defined in the constraint

template:

Using Enforcement Action and Audit

Thus far, we have discussed only how to define policy and have it enforced

as part of the request admission process. Constraints include the ability to

configure an enforcementAction which, by default is set to deny .

$ kubectl create -f bad_resources/opa_wrong_repo
Error from server (Forbidden): error when creatin

In addition to deny , enforcementAction also allows accepted

values of warn and dryrun . When we think about rolling out policy,

it’s not always the case that you are applying to a cluster or namespace

without resources already deployed. It’s therefore important to understand

how do you deploy policy to a cluster that already has resources deployed

with the confidence that you can identify and remediate policy violations

without necessarily breaking deployed workloads. The

enforcementAction field allows you to define the behavior. When

set to deny , a resource that violates policy will not be created and an error

message will both be audit logged and sent back to the user. If set to warn

the resource will be created however a warning message will be audit

logged and sent back to the user. Finally, if dryrun is set, the resource

will be created and resources that violate the policy will be available in the

audit log.

Whatever enforcementAction you decide to use, Gatekeeper will

periodically evaluate resources against any configured policy and provide

an audit log. This helps with the detection of misconfigured resources

according to policy and allows for remediation. The audit results are stored

in the status field of the constraint, making them easy to find by simply

using kubectl . To use audit, the resources to be audited must be

replicated. For more details, refer to “Data Replication”.

Let’s take a look at the constraint called prod-repo-is-

openpolicyagent that you defined in the previous section. In this case,

imagine we already had a pod called nginx running in the production

namespace and we would like to check it’s compliance to the policy using

audit:

$ kubectl get k8sallowedrepos
NAME ENFORCEMENT-ACTION
prod-repo-is-openpolicyagent deny
$ kubectl get k8sallowedrepos prod-repo-is-openpo
apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configurat
 creationTimestamp: "..."
 generation: 1
 name: prod-repo-is-openpolicyagent
 resourceVersion: "..."
 uid: ...
spec:
 match:

 kinds:
 - apiGroups:
 - ""
 kinds:
 - Pod
 namespaces:
 - production
 parameters:
 repos:
 - openpolicyagent/
status:
 auditTimestamp: "2022-11-27T23:37:42Z"
 totalViolations: 1

i l ti

Upon inspection, you can see the last time the audit ran in the

auditTimestamp field. We also see all of the resources that violate this

constraint, only the nginx pod in this case, under the violations along

with the enforcementAction .

Mutation

In addition to resource validation, Gatekeeper also allows you to configure

mutation policies. Mutation policies allow you to modify Kubernetes

resources at admission time. Generally, mutating resources at admission

time is not considered best practice. Having resources “magically” modified

by Gatekeeper is a cloud native anti-pattern as this is counter to the

declarative nature of Kubernetes. Mutation policies are simply mentioned

here to provide guidance to avoid them unless you feel your use-case

absolutely requires them and that you have exhausted other best practices.

Refer to the GitOps chapter for more details on how to implement

declarative best practices for Kubernetes resources.

 violations:
 - enforcementAction: deny
 group: ""
 kind: Pod
 message: container <nginx> has an invalid ima
 ["openpolicyagent/"]
 name: nginx
 namespace: production
 version: v1

Testing Policies

As the GitOps philosophy has become widely adopted, testing policy and

evaluation as part of local testing or CI/CD pipelines has become a must

have. Gatekeeper ships with a gator CLI which enables you to take the

constraint templates and constraints and run a local evaluation. This is a

great tool for building new policies, testing them against your resources and

remediating any issues prior to deploying them to your production clusters.

The Gatekeeper documentation provides a practical guide to using the gator

cli to test policy.

Becoming Familiar with Gatekeeper

The Gatekeeper repository ships with fantastic demonstration content that

walks you through a detailed example of building policies to meet

compliance for a bank. We would strongly recommend walking through the

demonstration for a hands-on approach to how Gatekeeper operates. You

can find the demonstration in this Git repository. Gatekeeper also maintains

a public library of policies that you can apply to your cluster wit h easy

installation guidance via ArtifactHub.

Policy and Governance Best Practices

You should consider the following best practices when implementing policy

and governance on your clusters:

If you want to enforce a specific field in a pod, you need to make a

determination of which Kubernetes resource specification you want to

inspect and enforce. Let’s consider the case of Deployments, for

example. Deployments manage ReplicaSets, which manage pods. We

could enforce at all three levels, but the best choice is the one that is the

lowest handoff point before the runtime, which in this case is the pod.

This decision, however, has implications. The user-friendly error

message when we try to deploy a noncompliant pod, as seen in “UX”, is

not going to be displayed. This is because the user is not creating the

noncompliant resource, the ReplicaSet is. This experience means that the

user would need to determine that the resource is not compliant by

running a kubectl describe on the current ReplicaSet associated

with the Deployment. Although this might seem cumbersome, this is

consistent behavior with other Kubernetes features, such as pod security.

Constraints can be applied to Kubernetes resources on the following

criteria: kinds, namespaces, and label selectors. We would strongly

recommend scoping the constraint to the resources to which you want it

to be applied as tightly as possible. This ensures consistent policy

behavior as the resources on the cluster grow, and means that resources

that don’t need to be evaluated aren’t being passed to OPA, which can

result in other inefficiencies.

On clusters with resources already deployed, utilize warn and

dryrun along with audit to remediate resources that violate policy

before setting the enforcementAction to deny .

Don’t use mutation policies, instead consider other declarative

approaches including GitOps.

Synchronizing and enforcing on potentially sensitive data such as

Kubernetes secrets is not recommended. Given that OPA will hold this in

its cache (if it is configured to replicate that data) and resources will be

passed to Gatekeeper, it leaves surface area for a potential attack vector.

If you have many constraints defined, a deny of constraint means that the

entire request is denied. There is no way to make this function as a

logical OR.

Summary

In this chapter, we covered why policy and governance are important and

walked through a project that’s built upon OPA, a cloud-native ecosystem

policy engine, to provide a Kubernetes-native approach to policy and

governance. You should now be prepared and confident the next time the

security teams asks, “Are our clusters in compliance with our defined

policy?”

Chapter 10. Admission Control and Authorization

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 17th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at jleonard@oreilly.com.

Controlling access to the Kubernetes API is key to ensuring that your

cluster is not only secured but also can be used as a means to impart policy

and governance for all users, workloads, and components of your

Kubernetes cluster. In this chapter, we share how you can use admission

controllers and authorization modules to enable specific features and how

you can customize them to suit your specific needs.

Figure 10-1 provides insight on how and where admission control and

authorization take place. It depicts the end-to-end request flow through the

Kubernetes API server until the object, if accepted, is saved to storage.

Follow the API request from left to right through the API server paying

specific attention to the ordering admission control and authorization. We

will be covering best practices for those in this chapter.

Figure 10-1. Kubernetes API request flow

Admission Control

Have you ever wondered how namespaces are automatically created when

you define a resource in a namespace that doesn’t already exist? Maybe

you’ve wondered how a default storage class is selected? These changes are

powered by a feature called admission controllers. In this section, we take a

look at how you can use admission controllers to implement Kubernetes

best practices server side on behalf of the user and how we can utilize

admission control to govern how a Kubernetes cluster is used.

What Are They?

Admission controllers sit in the path of the Kubernetes API server request

flow and receive requests following the authentication and authorization

phases. They are used to either validate or mutate (or both) the request

object before saving it to storage. The difference between validating and

mutating admission controllers is that mutating can modify the request

object they admit, whereas validating cannot.

Why Are They Important?

Given that admission controllers sit in the path of all API server requests,

you can use them in a variety of different ways. Most commonly, admission

controller usage can be grouped into the following three groups:

Policy and governance

Admission controllers allow policy to be enforced in order to meet

business requirements; for example:

Only internal cloud load balancers can be used when in the dev

namespace.

All containers in a pod must have resource limits.

Add predefined standard labels or annotations to all resources in order

to make them discoverable to existing tools.

All Ingress resources only use HTTPS. For more details on how to

use admission webhooks in this context, see Chapter 9.

Security

You can use admission controllers to enforce a consistent security

posture across your cluster. A canonical example is the PodSecurity

admission controller, which determines whether a pod should be

admitted based on the configuration of security-sensitive fields defined

in the pod. You can enforce more granular or custom security rules using

admission webhooks.

Resource management

Admission controllers allow you to validate in order to provide best

practices for your cluster users, for example:

Ensure all ingress fully qualified domain names (FQDN) fall within a

specific suffix.

Ensure ingress FQDNs don’t overlap.

All containers in a pod must have resource limits.

Admission Controller Types

There are two classes of admission controllers: standard and dynamic.

Standard admission controllers are compiled into the API server and are

shipped as plug-ins with each Kubernetes release; they need to be

configured when the API server is started. Dynamic controllers, on the

other hand, are configurable at runtime and are developed outside the core

Kubernetes codebase. The only type of dynamic admission control is

admission webhooks, which receive admission requests via HTTP

callbacks.

By default, the recommended admission controllers are enabled. You may

enable additional admission controllers using the following flag on the

Kubernetes API server:

--enable-admission-plugins

In the current version of Kubernetes, the following admission controllers

are enabled by default:

CertificateApproval, CertificateSigning, Certific

You can find the list of Kubernetes admission controllers and their

functionality in the Kubernetes documentation.

You might have noticed the following from the list of recommended

admission controllers to enable:

“MutatingAdmissionWebhook,ValidatingAdmissionWebhook.” These

standard admission controllers don’t implement any admission logic

themselves; rather, they are used to configure a webhook endpoint running

in-cluster to forward the admission request object.

Configuring Admission Webhooks

As previously mentioned, one of the main advantages of admission

webhooks is that they are dynamically configurable. It is important that you

understand how to effectively configure admission webhooks because there

are implications and trade-offs when it comes to consistency and failure

modes.

The snippet that follows is a ValidatingWebhookConfiguration resource

manifest. This manifest is used to define a validating admission webhook.

The snippet provides detailed descriptions on the function of each field ():

apiVersion: admissionregistration.k8s.io/v1
 kind: ValidatingWebhookConfiguration
 metadata:
 name: ## Resource name
 webhooks:

Ad i i bh k hi h ill b

For completeness, let’s take a look at a MutatingWebhookConfiguration

resource manifest. This manifest defines a mutating admission webhook.

The snippet provides detailed descriptions on the function of each field:

 - name: ## Admission webhook name, which will b
 clientConfig:
 service:
 namespace: ## The namespace where the adm
 name: ## The service name that is used to
 path: ## The webhook URL
 caBundle: ## The PEM encoded CA bundle whic
 rules: ## Describes what operations on what r
 - operations:
 - ## The specific operation that triggers t
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - ## Specific resources by name (e.g., depl
 failurePolicy: ## Defines how to handle acces
 admissionReviewVersions: ["v1"] ## Specify wh

 sideEffects: ## Signal whether the webhook ma
 timeoutSeconds: 5 ## How long the API server

apiVersion: admissionregistration.k8s.io/v1
 kind: MutatingWebhookConfiguration
 metadata:
 name: ## Resource name
 webhooks:
 - name: ## Admission webhook name, which will b

You might have noticed that both resources are identical, with the exception

of the kind field. There is one difference on the backend, however:

MutatingWebhookConfiguration allows the admission webhook to return a

modified request object, whereas ValidatingWebhookConfiguration does

not. Even still, it is acceptable to define a MutatingWebhookConfiguration

and simply validate; there are security considerations that come into play,

and you should consider following the least-privilege rule.

 clientConfig:
 service:
 namespace: ## The namespace where the adm
 name: ## The service name that is used to
 path: ## The webhook URL
 caBundle: ## The PEM encoded CA bundle whic
 rules: ## Describes what operations on what r
 - operations:
 - ## The specific operation that triggers t
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - ## Specific resources by name (e.g., depl
 failurePolicy: ## Defines how to handle acces
 admissionReviewVersions: ["v1"] ## Specify wh
 sideEffects: ## Signal whether the webhook ma
 reinvocationPolicy: ## Control whether mutati
 timeoutSeconds: 5 ## How long the API server

NOTE

It is also likely that you thought to yourself, “What happens if I define a

ValidatingWebhookConfiguration or MutatingWebhookConfiguration with the

resource field under the rule object to be either ValidatingWebhookConfiguration or

MutatingWebhookConfiguration?” The good news is that

ValidatingAdmissionWebhooks and MutatingAdmissionWebhooks are never called on

admission requests for ValidatingWebhookConfiguration and

MutatingWebhookConfiguration objects. This is for good reason: you don’t want to

accidentally put the cluster in an unrecoverable state.

Admission Control Best Practices

Now that we’ve covered the power of admission controllers, here are our

best practices to help you make the most of using them:

Admission plug-in ordering doesn’t matter

In earlier versions ofKubernetes, the ordering of the admission plug-ins was

specific to the processing order; hence it mattered. In current supported

Kubernetes versions, the ordering of the admission plug-ins as specified as

API server flags via --enable-admission-plugins no longer

matters. Ordering does, however, play a small role when it comes to

admission webhooks, so it’s important to understand the request flow in this

case. Request admittance or rejection operates as a logical AND, meaning if

any of the admission webhooks reject a request, the entire request is

rejected and an error is sent back to the user. It’s also important to note that

mutating admission controllers are always run prior to running validating

admission controllers. If you think about it, this makes good sense: you

probably don’t want to validate objects that you are going to subsequently

modify. Figure 10-2 illustrates a request flow via admission webhooks.

Figure 10-2. An API request flow via admission webhooks

Don’t mutate the same fields

Configuring multiple mutating admission webhooks also presents

challenges. There is no way to order the request flow through multiple

mutating admission webhooks, so it’s important to not have mutating

admission controllers modify the same fields, because this can result in

inconsistent behavior. In the case where you have multiple mutating

admission webhooks, we generally recommend configuring validating

admission webhooks to confirm that the final resource manifest is what you

expect post-mutation because it’s guaranteed to be run following mutating

webhooks.

Mutating admission webhooks must be idempotent

This means that they must be able to process and admit and object that has

already been processed and may have already been modified.

Fail open/fail closed

You might recall seeing the failurePolicy field as part of both the

mutating and validating webhook configuration resources. This field

defines how the API server should proceed in the case where the admission

webhooks have access issues or encounter unrecognized errors. You can set

this field to either Ignore or Fail . Ignore essentially fails to open,

meaning that processing of the request will continue, whereas Fail

denies the entire request. This might seem obvious, but the implications in

both cases require consideration. Ignoring a critical admission webhook

could result in policy that the business relies on not being applied to a

resource without the user knowing.

+ One potential solution to protect against this would be to raise an alert

when the API server logs that it cannot reach a given admission webhook.

Fail can be even more devastating by denying all requests if the

admission webhook is experiencing issues. To protect against this you can

scope the rules to ensure that only specific resource requests are set to the

admission webhook. As a tenet, you should never have any rules that apply

to all resources in the cluster.

Admission webhooks must respond quickly

If you have written your own admission webhook, it’s important to

remember that user/system requests can be directly affected by the time it

takes for your admission webhook to make a decision and respond. All

admission webhook calls are configured with a 30-second timeout, after

which time the failurePolicy takes effect. Even if it takes several

seconds for your admission webhook to make an admit/deny decision, it

can severely affect user experience when working with the cluster. Avoid

having complex logic or relying on external systems such as databases in

order to process the admit/deny logic. ===== Correctly scope admission

webhooks Scoping admission webhooks. There is an optional field that

allows you to scope the namespaces in which the admission webhooks

operate on via the NamespaceSelector field. This field defaults to

empty, which matches everything, but can be used to match namespace

labels via the use of the matchLabels field. We recommend that you

always use this field because it allows for an explicit opt-in per namespace.

Always deploy in a separate namespace use NamespaceSelector

When self-hosting a webhook admission controller, deploy the webhook

admission controller to a separate namespace and use the

NamespaceSelector field to exclude resources deployed to that

namespace from being processed.

Don’t touch the kube-system namespace

The kube-system namespace is a reserved namespace that’s common

across all Kubernetes clusters. It’s where all system-level services operate.

We recommend never running admission webhooks against the resources in

this namespace specifically, and you can achieve this by using the

NamespaceSelector field and simply not matching the kube-

system namespace. You should also consider it on any system-level

namespaces that are required for cluster operation.

Lock down admission webhook configurations with RBAC

Now that you know about all the fields in the admission webhook

configuration, you have probably thought of a really simple way to break

access to a cluster. It goes without saying that the creation of both a

MutatingWebhookConfiguration and ValidatingWebhookConfiguration is a

root-level operation on the cluster and must be locked down appropriately

using RBAC. Failure to do so can result in a broken cluster or, even worse,

an injection attack on your application workloads.

Don’t send sensitive data

Admission webhooks are essentially black boxes that accept

AdmissionRequests and output AdmissionResponses. How they store and

manipulate the request is opaque to the user. It’s important to think about

what request payloads you are sending to the admission webhook. In the

case of Kubernetes secrets or ConfigMaps, they might contain sensitive

information and require strong guarantees about how that information is

stored and shared. Sharing these resources with an admission webhook can

leak sensitive information, which is why you should scope your resource

rules to the minimum resource needed to validate and/or mutate.

Authorization

We often think about authorization in the context of answering the

following question: “Is this user able to perform these actions on these

resources?” In Kubernetes, the authorization of each request is performed

after authentication but before admission. In this section, we explore how

you can configure different authorization modules and better understand

how you can create the appropriate policy to serve the needs of your cluster.

Figure 10-3 illustrates where authorization sits in the request flow.

Figure 10-3. API request flow via authorization modules

Authorization Modules

Authorization modules are responsible for either granting or denying

permission to access. They determine whether to grant access based on

policy that must be explicitly defined; otherwise all requests will be

implicitly denied.

Kubernetes ships with the following authorization modules out of the box:

Attribute-Based Access Control (ABAC)

Allows authorization policy to be configured via local files

RBAC

Allows authorization policy to be configured via the Kubernetes API

(refer to Chapter 4 for more detail)

Webhook

Allows the authorization of a request to be handled via a remote REST

endpoint

Node

Specialized authorization module that authorizes requests from kubelets

The modules are configured by the cluster administrator via the following

flag on the API server: --authorization-mode . Multiple modules

can be configured and are checked in order. Unlike admission controllers, if

a single authorization module admits the request, the request can proceed.

Only for the case in which all modules deny the request will an error be

returned to the user.

ABAC

Let’s take a look at a policy definition in the context of using the ABAC

authorization module. The following grants user Mary read-only access to a

pod in the kube-system namespace:

If Mary were to make the following request, it would be denied because

Mary doesn’t have access to get pods in the demo-app namespace:

apiVersion: authorization.k8s.io/v1
kind: SubjectAccessReview
spec:
 resourceAttributes:
 verb: get
 resource: pods
 namespace: demo-app

This example introduced a new API group, authorization.k8s.io .

This set of APIs exposes API server authorization to external services and

has the following APIs, which are great for debugging:

SelfSubjectAccessReview

apiVersion: abac.authorization.kubernetes.io/v1be
kind: Policy
spec:
 user: mary
 resource: pods
 readonly: true
 namespace: kube-system

Access review for the current user

SubjectAccessReview

Like SelfSubjectAccessReview but for any user

LocalSubjectAccessReview

Like SubjectAccessReview but namespace specific

SelfSubjectRulesReview

Returns a list of actions a user can perform in a given namespace

The really cool part is that you can query these APIs by creating resources

as you typically would. Let’s actually take the previous example and test

this for ourselves using the SelfSubjectAccessReview. The status field in

the output indicates that this request is allowed:

$ cat << EOF | kubectl create -f - -o yaml
apiVersion: authorization.k8s.io/v1
kind: SelfSubjectAccessReview
spec:
 resourceAttributes:
 verb: get
 resource: pods
 namespace: demo-app
EOF
apiVersion: authorization.k8s.io/v1
kind: SelfSubjectAccessReview
metadata:
 creationTimestamp: null
spec:

 resourceAttributes:
 namespace: kube-system
 resource: pods
 verb: get
status:
 allowed: true

In fact, Kubernetes ships with tooling built into kubectl to make this

even easier. The kubectl auth can-i command operates by

querying the same API as the previous example:

With administrator credentials, you can also run the same command to

check actions as another user:

RBAC

Kubernetes role-based access control is covered in depth in Chapter 4.

Webhook

$ kubectl auth can-i get pods --namespace demo-ap
yes

$ kubectl auth can-i get pods --namespace demo-ap
yes

Using the webhook authorization module allows a cluster administrator to

configure an external REST endpoint to delegate the authorization process

to. This would run off cluster and be reachable via URL. The configuration

of the REST endpoint is found in a file on the control plane host filesystem

and configured on the API server via --authorization-webhook-

config-file=SOME_FILENAME . After you’ve configured it, the API

server will send SubjectAccessReview objects as part of the request body to

the authorization webhook application, which processes and returns the

object with the status field complete.

Authorization Best Practices

Consider the following best practices before making changes to the

authorization modules configured on your cluster:

Don’t use ABAC on multi control plane clusters

Given that the ABAC policies need to be placed on the filesystem of each

control plane host and kept synchronized, we generally recommend against

using ABAC in multi control plane clusters. The same can be said for the

webhook module because the configuration is based on a file and a

corresponding flag being present. Furthermore, changes to these policies in

the files require a restart of the API server to take effect, which is

effectively a control plane outage in a single control plane cluster or

inconsistent configuration in a multi control plane cluster. Given these

details, we recommend using only the RBAC module for user authorization

because the rules are configured and stored in Kubernetes itself.

Don’t use webhook modules

Webhook modules, although powerful, are potentially very dangerous.

Given that every request is subject to the authorization process, a failure of

a webhook service would be devastating for a cluster. Therefore, we

generally recommend not using external authorization modules unless you

completely vet and are comfortable with your cluster failure modes if the

webhook service becomes unreachable or unavailable.

Summary

In this chapter, we covered the foundational topics of admission and

authorization and covered best practices. Put these skills to use by

determining the best admission and authorization configuration that allows

you to customize the controls and policies needed for the life of your

cluster.

About the Authors

Brendan Burns is a distinguished engineer at Microsoft Azure and

cofounder of the Kubernetes open source project. He’s been building cloud

applications for more than a decade.

Eddie Villalba is a software engineer with Microsoft’s Commercial

Software Engineering division, focusing on open source cloud and

Kubernetes. He’s helped many real-world users adopt Kubernetes for their

applications.

Dave Strebel is a global cloud native architect at Microsoft Azure focusing

on open source cloud and Kubernetes. He’s deeply involved in the

Kubernetes open source project, helping with the Kubernetes release team

and leading SIG-Azure.

Lachlan Evenson is a principal program manager on the container compute

team at Microsoft Azure. He’s helped numerous people onboard to

Kubernetes through both hands-on teaching and conference talks.

	1. Setting Up a Basic Service
	Application Overview
	Managing Configuration Files
	Creating a Replicated Service Using Deployments
	Best Practices for Image Management
	Creating a Replicated Application

	Setting Up an External Ingress for HTTP Traffic
	Configuring an Application with ConfigMaps
	Managing Authentication with Secrets
	Deploying a Simple Stateful Database
	Creating a TCP Load Balancer by Using Services
	Using Ingress to Route Traffic to a Static File Server
	Parameterizing Your Application by Using Helm
	Deploying Services Best Practices
	Summary

	2. Developer Workflows
	Goals
	Building a Development Cluster
	Setting Up a Shared Cluster for Multiple Developers
	Onboarding Users
	Creating and Securing a Namespace
	Managing Namespaces
	Cluster-Level Services

	Enabling Developer Workflows
	Initial Setup
	Enabling Active Development
	Enabling Testing and Debugging
	Setting Up a Development Environment Best Practices
	Summary

	3. Monitoring and Logging in Kubernetes
	Metrics Versus Logs
	Monitoring Techniques
	Monitoring Patterns
	Kubernetes Metrics Overview
	cAdvisor
	Metrics Server
	kube-state-metrics

	What Metrics Do I Monitor?
	Monitoring Tools
	Monitoring Kubernetes Using Prometheus
	Logging Overview
	Tools for Logging
	Logging by Using a Loki-Stack
	Alerting
	Best Practices for Monitoring, Logging, and Alerting
	Monitoring
	Logging
	Alerting

	Summary

	4. Configuration, Secrets, and RBAC
	Configuration Through ConfigMaps and Secrets
	ConfigMaps
	Secrets

	Common Best Practices for the ConfigMap and Secrets APIs
	RBAC
	RBAC Primer
	RBAC Best Practices

	Summary

	5. Continuous Integration, Testing, and Deployment
	Version Control
	Continuous Integration
	Testing
	Container Builds
	Container Image Tagging
	Continuous Deployment
	Deployment Strategies
	Testing in Production
	Setting Up a Pipeline and Performing a Chaos Experiment
	Setting Up CI
	Setting Up CD
	Performing a Rolling Upgrade
	A Simple Chaos Experiment

	Best Practices for CI/CD
	Summary

	6. Versioning, Releases, and Rollouts
	Versioning
	Releases
	Rollouts
	Putting It All Together
	Best Practices for Versioning, Releases, and Rollouts

	Summary

	7. Worldwide Application Distribution and Staging
	Distributing Your Image
	Parameterizing Your Deployment
	Load-Balancing Traffic Around the World
	Reliably Rolling Out Software Around the World
	Pre-Rollout Validation
	Canary Region
	Identifying Region Types
	Constructing a Global Rollout

	When Something Goes Wrong
	Worldwide Rollout Best Practices
	Summary

	8. Networking, Network Security, and Service Mesh
	Kubernetes Network Principles
	Network Plug-ins
	Kubenet
	Kubenet Best Practices
	The CNI Plug-in
	CNI Best Practices

	Services in Kubernetes
	Service Type ClusterIP
	Service Type NodePort
	Service Type ExternalName
	Service Type LoadBalancer
	Ingress and Ingress Controllers
	Gateway API
	Services and Ingress Controllers Best Practices

	Network Security Policy
	Network Policy Best Practices

	Service Meshes
	Service Mesh Best Practices

	Summary

	9. Policy and Governance for Your Cluster
	Why Policy and Governance Are Important
	How Is This Policy Different?
	Cloud-Native Policy Engine
	Introducing Gatekeeper
	Example Policies
	Gatekeeper Terminology
	Defining Constraint Templates
	Defining Constraints
	Data Replication
	UX

	Using Enforcement Action and Audit
	Mutation
	Testing Policies
	Becoming Familiar with Gatekeeper

	Policy and Governance Best Practices
	Summary

	10. Admission Control and Authorization
	Admission Control
	What Are They?
	Why Are They Important?
	Admission Controller Types
	Configuring Admission Webhooks
	Admission Control Best Practices

	Authorization
	Authorization Modules
	Authorization Best Practices
	Don’t use webhook modules

	Summary

	About the Authors

